| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2spim | GIF version | ||
| Description: Double substitution, as in spim 1752. (Contributed by BJ, 17-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| 2spim.nfx | ⊢ Ⅎ𝑥𝜒 | 
| 2spim.nfz | ⊢ Ⅎ𝑧𝜒 | 
| 2spim.1 | ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| 2spim | ⊢ (∀𝑧∀𝑥𝜓 → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2spim.nfz | . 2 ⊢ Ⅎ𝑧𝜒 | |
| 2 | 2spim.nfx | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑧 = 𝑡 → Ⅎ𝑥𝜒) | 
| 4 | 2spim.1 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜓 → 𝜒)) | |
| 5 | 4 | expcom 116 | . . . 4 ⊢ (𝑧 = 𝑡 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | 
| 6 | 5 | alrimiv 1888 | . . 3 ⊢ (𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜓 → 𝜒))) | 
| 7 | 3, 6 | spimd 15411 | . 2 ⊢ (𝑧 = 𝑡 → (∀𝑥𝜓 → 𝜒)) | 
| 8 | 1, 7 | spim 1752 | 1 ⊢ (∀𝑧∀𝑥𝜓 → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: ch2var 15413 | 
| Copyright terms: Public domain | W3C validator |