Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2spim GIF version

Theorem 2spim 11010
Description: Double substitution, as in spim 1668. (Contributed by BJ, 17-Oct-2019.)
Hypotheses
Ref Expression
2spim.nfx 𝑥𝜒
2spim.nfz 𝑧𝜒
2spim.1 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝜓𝜒))
Assertion
Ref Expression
2spim (∀𝑧𝑥𝜓𝜒)
Distinct variable groups:   𝑥,𝑧   𝑥,𝑡
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑡)   𝜒(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem 2spim
StepHypRef Expression
1 2spim.nfz . 2 𝑧𝜒
2 2spim.nfx . . . 4 𝑥𝜒
32a1i 9 . . 3 (𝑧 = 𝑡 → Ⅎ𝑥𝜒)
4 2spim.1 . . . . 5 ((𝑥 = 𝑦𝑧 = 𝑡) → (𝜓𝜒))
54expcom 114 . . . 4 (𝑧 = 𝑡 → (𝑥 = 𝑦 → (𝜓𝜒)))
65alrimiv 1797 . . 3 (𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → (𝜓𝜒)))
73, 6spimd 11009 . 2 (𝑧 = 𝑡 → (∀𝑥𝜓𝜒))
81, 7spim 1668 1 (∀𝑧𝑥𝜓𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1283  wnf 1390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-nf 1391
This theorem is referenced by:  ch2var  11011
  Copyright terms: Public domain W3C validator