Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spim | Unicode version |
Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1736 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.) |
Ref | Expression |
---|---|
spim.1 | |
spim.2 |
Ref | Expression |
---|---|
spim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spim.1 | . . 3 | |
2 | 1 | nfri 1517 | . 2 |
3 | spim.2 | . 2 | |
4 | 2, 3 | spimh 1735 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wnf 1458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-nf 1459 |
This theorem is referenced by: cbv3 1740 chvar 1755 spimv 1809 2spim 14078 |
Copyright terms: Public domain | W3C validator |