ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr3g Unicode version

Theorem 3eltr3g 2255
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3g.1  |-  ( ph  ->  A  e.  B )
3eltr3g.2  |-  A  =  C
3eltr3g.3  |-  B  =  D
Assertion
Ref Expression
3eltr3g  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr3g
StepHypRef Expression
1 3eltr3g.1 . 2  |-  ( ph  ->  A  e.  B )
2 3eltr3g.2 . . 3  |-  A  =  C
3 3eltr3g.3 . . 3  |-  B  =  D
42, 3eleq12i 2238 . 2  |-  ( A  e.  B  <->  C  e.  D )
51, 4sylib 121 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator