Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq12i | Unicode version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
eleq1i.1 | |
eleq12i.2 |
Ref | Expression |
---|---|
eleq12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12i.2 | . . 3 | |
2 | 1 | eleq2i 2233 | . 2 |
3 | eleq1i.1 | . . 3 | |
4 | 3 | eleq1i 2232 | . 2 |
5 | 2, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: 3eltr3g 2251 3eltr4g 2252 sbcel12g 3060 ennnfonelem1 12340 |
Copyright terms: Public domain | W3C validator |