| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eleq12i | Unicode version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) | 
| Ref | Expression | 
|---|---|
| eleq1i.1 | 
 | 
| eleq12i.2 | 
 | 
| Ref | Expression | 
|---|---|
| eleq12i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq12i.2 | 
. . 3
 | |
| 2 | 1 | eleq2i 2263 | 
. 2
 | 
| 3 | eleq1i.1 | 
. . 3
 | |
| 4 | 3 | eleq1i 2262 | 
. 2
 | 
| 5 | 2, 4 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: 3eltr3g 2281 3eltr4g 2282 sbcel12g 3099 ennnfonelem1 12624 gausslemma2dlem4 15305 | 
| Copyright terms: Public domain | W3C validator |