| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 |
|
| 3eltr4d.2 |
|
| 3eltr4d.3 |
|
| Ref | Expression |
|---|---|
| 3eltr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 |
. 2
| |
| 2 | 3eltr4d.1 |
. . 3
| |
| 3 | 3eltr4d.3 |
. . 3
| |
| 4 | 2, 3 | eleqtrrd 2309 |
. 2
|
| 5 | 1, 4 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: ovmpodxf 6130 nnaordi 6654 iccf1o 10200 nnmindc 12555 ennnfonelemrn 12990 ctiunctlemfo 13010 sgrppropd 13446 mndpropd 13473 issubmnd 13475 imasgrp 13648 mulgnndir 13688 subg0cl 13719 subginvcl 13720 subgcl 13721 rngcl 13907 rngpropd 13918 srgcl 13933 srgidcl 13939 ringidcl 13983 ringpropd 14001 dvdsrd 14058 dvrvald 14098 subrngmcl 14173 subrgmcl 14197 subrgunit 14203 lmodprop2d 14312 lidl0 14453 lidl1 14454 psraddcl 14644 wlkl1loop 16069 |
| Copyright terms: Public domain | W3C validator |