| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 |
|
| 3eltr4d.2 |
|
| 3eltr4d.3 |
|
| Ref | Expression |
|---|---|
| 3eltr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 |
. 2
| |
| 2 | 3eltr4d.1 |
. . 3
| |
| 3 | 3eltr4d.3 |
. . 3
| |
| 4 | 2, 3 | eleqtrrd 2276 |
. 2
|
| 5 | 1, 4 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: ovmpodxf 6048 nnaordi 6566 iccf1o 10079 nnmindc 12201 ennnfonelemrn 12636 ctiunctlemfo 12656 sgrppropd 13056 mndpropd 13081 issubmnd 13083 imasgrp 13241 mulgnndir 13281 subg0cl 13312 subginvcl 13313 subgcl 13314 rngcl 13500 rngpropd 13511 srgcl 13526 srgidcl 13532 ringidcl 13576 ringpropd 13594 dvdsrd 13650 dvrvald 13690 subrngmcl 13765 subrgmcl 13789 subrgunit 13795 lmodprop2d 13904 lidl0 14045 lidl1 14046 psraddcl 14232 |
| Copyright terms: Public domain | W3C validator |