ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d Unicode version

Theorem 3eltr4d 2261
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1  |-  ( ph  ->  A  e.  B )
3eltr4d.2  |-  ( ph  ->  C  =  A )
3eltr4d.3  |-  ( ph  ->  D  =  B )
Assertion
Ref Expression
3eltr4d  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2  |-  ( ph  ->  C  =  A )
2 3eltr4d.1 . . 3  |-  ( ph  ->  A  e.  B )
3 3eltr4d.3 . . 3  |-  ( ph  ->  D  =  B )
42, 3eleqtrrd 2257 . 2  |-  ( ph  ->  A  e.  D )
51, 4eqeltrd 2254 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173
This theorem is referenced by:  ovmpodxf  6003  nnaordi  6512  iccf1o  10007  nnmindc  12038  ennnfonelemrn  12423  ctiunctlemfo  12443  mndpropd  12847  issubmnd  12849  mulgnndir  13018  subg0cl  13048  subginvcl  13049  subgcl  13050  srgcl  13159  srgidcl  13165  ringidcl  13209  ringpropd  13223  dvdsrd  13269  dvrvald  13309  subrgmcl  13360  subrgunit  13366  lmodprop2d  13444  lidl0  13573  lidl1  13574
  Copyright terms: Public domain W3C validator