| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 |
|
| 3eltr4d.2 |
|
| 3eltr4d.3 |
|
| Ref | Expression |
|---|---|
| 3eltr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 |
. 2
| |
| 2 | 3eltr4d.1 |
. . 3
| |
| 3 | 3eltr4d.3 |
. . 3
| |
| 4 | 2, 3 | eleqtrrd 2285 |
. 2
|
| 5 | 1, 4 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: ovmpodxf 6073 nnaordi 6596 iccf1o 10128 nnmindc 12388 ennnfonelemrn 12823 ctiunctlemfo 12843 sgrppropd 13278 mndpropd 13305 issubmnd 13307 imasgrp 13480 mulgnndir 13520 subg0cl 13551 subginvcl 13552 subgcl 13553 rngcl 13739 rngpropd 13750 srgcl 13765 srgidcl 13771 ringidcl 13815 ringpropd 13833 dvdsrd 13889 dvrvald 13929 subrngmcl 14004 subrgmcl 14028 subrgunit 14034 lmodprop2d 14143 lidl0 14284 lidl1 14285 psraddcl 14475 |
| Copyright terms: Public domain | W3C validator |