Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eltr4d | Unicode version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4d.1 | |
3eltr4d.2 | |
3eltr4d.3 |
Ref | Expression |
---|---|
3eltr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4d.2 | . 2 | |
2 | 3eltr4d.1 | . . 3 | |
3 | 3eltr4d.3 | . . 3 | |
4 | 2, 3 | eleqtrrd 2255 | . 2 |
5 | 1, 4 | eqeltrd 2252 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 df-clel 2171 |
This theorem is referenced by: ovmpodxf 5990 nnaordi 6499 iccf1o 9973 nnmindc 12000 ennnfonelemrn 12385 ctiunctlemfo 12405 mndpropd 12705 mulgnndir 12870 srgcl 12948 srgidcl 12954 ringidcl 12998 ringpropd 13011 |
Copyright terms: Public domain | W3C validator |