ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d Unicode version

Theorem 3eltr4d 2280
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1  |-  ( ph  ->  A  e.  B )
3eltr4d.2  |-  ( ph  ->  C  =  A )
3eltr4d.3  |-  ( ph  ->  D  =  B )
Assertion
Ref Expression
3eltr4d  |-  ( ph  ->  C  e.  D )

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2  |-  ( ph  ->  C  =  A )
2 3eltr4d.1 . . 3  |-  ( ph  ->  A  e.  B )
3 3eltr4d.3 . . 3  |-  ( ph  ->  D  =  B )
42, 3eleqtrrd 2276 . 2  |-  ( ph  ->  A  e.  D )
51, 4eqeltrd 2273 1  |-  ( ph  ->  C  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  ovmpodxf  6052  nnaordi  6575  iccf1o  10096  nnmindc  12226  ennnfonelemrn  12661  ctiunctlemfo  12681  sgrppropd  13115  mndpropd  13142  issubmnd  13144  imasgrp  13317  mulgnndir  13357  subg0cl  13388  subginvcl  13389  subgcl  13390  rngcl  13576  rngpropd  13587  srgcl  13602  srgidcl  13608  ringidcl  13652  ringpropd  13670  dvdsrd  13726  dvrvald  13766  subrngmcl  13841  subrgmcl  13865  subrgunit  13871  lmodprop2d  13980  lidl0  14121  lidl1  14122  psraddcl  14308
  Copyright terms: Public domain W3C validator