| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | Unicode version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 |
|
| 3eltr4d.2 |
|
| 3eltr4d.3 |
|
| Ref | Expression |
|---|---|
| 3eltr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 |
. 2
| |
| 2 | 3eltr4d.1 |
. . 3
| |
| 3 | 3eltr4d.3 |
. . 3
| |
| 4 | 2, 3 | eleqtrrd 2287 |
. 2
|
| 5 | 1, 4 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: ovmpodxf 6094 nnaordi 6617 iccf1o 10161 nnmindc 12470 ennnfonelemrn 12905 ctiunctlemfo 12925 sgrppropd 13360 mndpropd 13387 issubmnd 13389 imasgrp 13562 mulgnndir 13602 subg0cl 13633 subginvcl 13634 subgcl 13635 rngcl 13821 rngpropd 13832 srgcl 13847 srgidcl 13853 ringidcl 13897 ringpropd 13915 dvdsrd 13971 dvrvald 14011 subrngmcl 14086 subrgmcl 14110 subrgunit 14116 lmodprop2d 14225 lidl0 14366 lidl1 14367 psraddcl 14557 |
| Copyright terms: Public domain | W3C validator |