ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ianorr Unicode version

Theorem 3ianorr 1304
Description: Triple disjunction implies negated triple conjunction. (Contributed by Jim Kingdon, 23-Dec-2018.)
Assertion
Ref Expression
3ianorr  |-  ( ( -.  ph  \/  -.  ps  \/  -.  ch )  ->  -.  ( ph  /\  ps  /\  ch ) )

Proof of Theorem 3ianorr
StepHypRef Expression
1 simp1 992 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ph )
21con3i 627 . 2  |-  ( -. 
ph  ->  -.  ( ph  /\ 
ps  /\  ch )
)
3 simp2 993 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ps )
43con3i 627 . 2  |-  ( -. 
ps  ->  -.  ( ph  /\ 
ps  /\  ch )
)
5 simp3 994 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ch )
65con3i 627 . 2  |-  ( -. 
ch  ->  -.  ( ph  /\ 
ps  /\  ch )
)
72, 4, 63jaoi 1298 1  |-  ( ( -.  ph  \/  -.  ps  \/  -.  ch )  ->  -.  ( ph  /\  ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ w3o 972    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975
This theorem is referenced by:  funtpg  5249
  Copyright terms: Public domain W3C validator