ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg Unicode version

Theorem funtpg 5325
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 997 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( X  e.  U  /\  Y  e.  V
) )
2 3simpa 997 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( A  e.  F  /\  B  e.  G
) )
3 simp1 1000 . . . 4  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
4 funprg 5324 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V
)  /\  ( A  e.  F  /\  B  e.  G )  /\  X  =/=  Y )  ->  Fun  {
<. X ,  A >. , 
<. Y ,  B >. } )
51, 2, 3, 4syl3an 1292 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. } )
6 simp13 1032 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Z  e.  W )
7 simp23 1035 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  C  e.  H )
8 funsng 5320 . . . 4  |-  ( ( Z  e.  W  /\  C  e.  H )  ->  Fun  { <. Z ,  C >. } )
96, 7, 8syl2anc 411 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. Z ,  C >. } )
1023ad2ant2 1022 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( A  e.  F  /\  B  e.  G
) )
11 dmpropg 5155 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  G )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }
)
1210, 11syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y } )
13 dmsnopg 5154 . . . . . 6  |-  ( C  e.  H  ->  dom  {
<. Z ,  C >. }  =  { Z }
)
147, 13syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. Z ,  C >. }  =  { Z } )
1512, 14ineq12d 3375 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  ( { X ,  Y }  i^i  { Z } ) )
16 elpri 3656 . . . . . . . 8  |-  ( Z  e.  { X ,  Y }  ->  ( Z  =  X  \/  Z  =  Y ) )
17 nner 2380 . . . . . . . . . . . 12  |-  ( X  =  Z  ->  -.  X  =/=  Z )
1817eqcoms 2208 . . . . . . . . . . 11  |-  ( Z  =  X  ->  -.  X  =/=  Z )
19 3mix2 1170 . . . . . . . . . . 11  |-  ( -.  X  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2018, 19syl 14 . . . . . . . . . 10  |-  ( Z  =  X  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
21 nner 2380 . . . . . . . . . . . 12  |-  ( Y  =  Z  ->  -.  Y  =/=  Z )
2221eqcoms 2208 . . . . . . . . . . 11  |-  ( Z  =  Y  ->  -.  Y  =/=  Z )
23 3mix3 1171 . . . . . . . . . . 11  |-  ( -.  Y  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2422, 23syl 14 . . . . . . . . . 10  |-  ( Z  =  Y  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
2520, 24jaoi 718 . . . . . . . . 9  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  ( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
26 3ianorr 1322 . . . . . . . . 9  |-  ( ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
)  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2725, 26syl 14 . . . . . . . 8  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  -.  ( X  =/= 
Y  /\  X  =/=  Z  /\  Y  =/=  Z
) )
2816, 27syl 14 . . . . . . 7  |-  ( Z  e.  { X ,  Y }  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2928con2i 628 . . . . . 6  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
30 disjsn 3695 . . . . . 6  |-  ( ( { X ,  Y }  i^i  { Z }
)  =  (/)  <->  -.  Z  e.  { X ,  Y } )
3129, 30sylibr 134 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  ( { X ,  Y }  i^i  { Z } )  =  (/) )
32313ad2ant3 1023 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { X ,  Y }  i^i  { Z } )  =  (/) )
3315, 32eqtrd 2238 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  (/) )
34 funun 5315 . . 3  |-  ( ( ( Fun  { <. X ,  A >. ,  <. Y ,  B >. }  /\  Fun  { <. Z ,  C >. } )  /\  ( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  { <. Z ,  C >. } )  =  (/) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
355, 9, 33, 34syl21anc 1249 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
36 df-tp 3641 . . 3  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
3736funeqi 5292 . 2  |-  ( Fun 
{ <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  <->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) )
3835, 37sylibr 134 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376    u. cun 3164    i^i cin 3165   (/)c0 3460   {csn 3633   {cpr 3634   {ctp 3635   <.cop 3636   dom cdm 4675   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-fun 5273
This theorem is referenced by:  fntpg  5330
  Copyright terms: Public domain W3C validator