Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funtpg | Unicode version |
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
Ref | Expression |
---|---|
funtpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 989 | . . . 4 | |
2 | 3simpa 989 | . . . 4 | |
3 | simp1 992 | . . . 4 | |
4 | funprg 5246 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3an 1275 | . . 3 |
6 | simp13 1024 | . . . 4 | |
7 | simp23 1027 | . . . 4 | |
8 | funsng 5242 | . . . 4 | |
9 | 6, 7, 8 | syl2anc 409 | . . 3 |
10 | 2 | 3ad2ant2 1014 | . . . . . 6 |
11 | dmpropg 5081 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | dmsnopg 5080 | . . . . . 6 | |
14 | 7, 13 | syl 14 | . . . . 5 |
15 | 12, 14 | ineq12d 3329 | . . . 4 |
16 | elpri 3604 | . . . . . . . 8 | |
17 | nner 2344 | . . . . . . . . . . . 12 | |
18 | 17 | eqcoms 2173 | . . . . . . . . . . 11 |
19 | 3mix2 1162 | . . . . . . . . . . 11 | |
20 | 18, 19 | syl 14 | . . . . . . . . . 10 |
21 | nner 2344 | . . . . . . . . . . . 12 | |
22 | 21 | eqcoms 2173 | . . . . . . . . . . 11 |
23 | 3mix3 1163 | . . . . . . . . . . 11 | |
24 | 22, 23 | syl 14 | . . . . . . . . . 10 |
25 | 20, 24 | jaoi 711 | . . . . . . . . 9 |
26 | 3ianorr 1304 | . . . . . . . . 9 | |
27 | 25, 26 | syl 14 | . . . . . . . 8 |
28 | 16, 27 | syl 14 | . . . . . . 7 |
29 | 28 | con2i 622 | . . . . . 6 |
30 | disjsn 3643 | . . . . . 6 | |
31 | 29, 30 | sylibr 133 | . . . . 5 |
32 | 31 | 3ad2ant3 1015 | . . . 4 |
33 | 15, 32 | eqtrd 2203 | . . 3 |
34 | funun 5240 | . . 3 | |
35 | 5, 9, 33, 34 | syl21anc 1232 | . 2 |
36 | df-tp 3589 | . . 3 | |
37 | 36 | funeqi 5217 | . 2 |
38 | 35, 37 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 cun 3119 cin 3120 c0 3414 csn 3581 cpr 3582 ctp 3583 cop 3584 cdm 4609 wfun 5190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-tp 3589 df-op 3590 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-fun 5198 |
This theorem is referenced by: fntpg 5252 |
Copyright terms: Public domain | W3C validator |