| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funtpg | Unicode version | ||
| Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| funtpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1018 |
. . . 4
| |
| 2 | 3simpa 1018 |
. . . 4
| |
| 3 | simp1 1021 |
. . . 4
| |
| 4 | funprg 5371 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl3an 1313 |
. . 3
|
| 6 | simp13 1053 |
. . . 4
| |
| 7 | simp23 1056 |
. . . 4
| |
| 8 | funsng 5367 |
. . . 4
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . 3
|
| 10 | 2 | 3ad2ant2 1043 |
. . . . . 6
|
| 11 | dmpropg 5201 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | dmsnopg 5200 |
. . . . . 6
| |
| 14 | 7, 13 | syl 14 |
. . . . 5
|
| 15 | 12, 14 | ineq12d 3406 |
. . . 4
|
| 16 | elpri 3689 |
. . . . . . . 8
| |
| 17 | nner 2404 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eqcoms 2232 |
. . . . . . . . . . 11
|
| 19 | 3mix2 1191 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . . 10
|
| 21 | nner 2404 |
. . . . . . . . . . . 12
| |
| 22 | 21 | eqcoms 2232 |
. . . . . . . . . . 11
|
| 23 | 3mix3 1192 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . 10
|
| 25 | 20, 24 | jaoi 721 |
. . . . . . . . 9
|
| 26 | 3ianorr 1343 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | 16, 27 | syl 14 |
. . . . . . 7
|
| 29 | 28 | con2i 630 |
. . . . . 6
|
| 30 | disjsn 3728 |
. . . . . 6
| |
| 31 | 29, 30 | sylibr 134 |
. . . . 5
|
| 32 | 31 | 3ad2ant3 1044 |
. . . 4
|
| 33 | 15, 32 | eqtrd 2262 |
. . 3
|
| 34 | funun 5362 |
. . 3
| |
| 35 | 5, 9, 33, 34 | syl21anc 1270 |
. 2
|
| 36 | df-tp 3674 |
. . 3
| |
| 37 | 36 | funeqi 5339 |
. 2
|
| 38 | 35, 37 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-fun 5320 |
| This theorem is referenced by: fntpg 5377 |
| Copyright terms: Public domain | W3C validator |