Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funtpg | Unicode version |
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
Ref | Expression |
---|---|
funtpg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 984 | . . . 4 | |
2 | 3simpa 984 | . . . 4 | |
3 | simp1 987 | . . . 4 | |
4 | funprg 5238 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3an 1270 | . . 3 |
6 | simp13 1019 | . . . 4 | |
7 | simp23 1022 | . . . 4 | |
8 | funsng 5234 | . . . 4 | |
9 | 6, 7, 8 | syl2anc 409 | . . 3 |
10 | 2 | 3ad2ant2 1009 | . . . . . 6 |
11 | dmpropg 5076 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | dmsnopg 5075 | . . . . . 6 | |
14 | 7, 13 | syl 14 | . . . . 5 |
15 | 12, 14 | ineq12d 3324 | . . . 4 |
16 | elpri 3599 | . . . . . . . 8 | |
17 | nner 2340 | . . . . . . . . . . . 12 | |
18 | 17 | eqcoms 2168 | . . . . . . . . . . 11 |
19 | 3mix2 1157 | . . . . . . . . . . 11 | |
20 | 18, 19 | syl 14 | . . . . . . . . . 10 |
21 | nner 2340 | . . . . . . . . . . . 12 | |
22 | 21 | eqcoms 2168 | . . . . . . . . . . 11 |
23 | 3mix3 1158 | . . . . . . . . . . 11 | |
24 | 22, 23 | syl 14 | . . . . . . . . . 10 |
25 | 20, 24 | jaoi 706 | . . . . . . . . 9 |
26 | 3ianorr 1299 | . . . . . . . . 9 | |
27 | 25, 26 | syl 14 | . . . . . . . 8 |
28 | 16, 27 | syl 14 | . . . . . . 7 |
29 | 28 | con2i 617 | . . . . . 6 |
30 | disjsn 3638 | . . . . . 6 | |
31 | 29, 30 | sylibr 133 | . . . . 5 |
32 | 31 | 3ad2ant3 1010 | . . . 4 |
33 | 15, 32 | eqtrd 2198 | . . 3 |
34 | funun 5232 | . . 3 | |
35 | 5, 9, 33, 34 | syl21anc 1227 | . 2 |
36 | df-tp 3584 | . . 3 | |
37 | 36 | funeqi 5209 | . 2 |
38 | 35, 37 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 w3o 967 w3a 968 wceq 1343 wcel 2136 wne 2336 cun 3114 cin 3115 c0 3409 csn 3576 cpr 3577 ctp 3578 cop 3579 cdm 4604 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-fun 5190 |
This theorem is referenced by: fntpg 5244 |
Copyright terms: Public domain | W3C validator |