ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtpg Unicode version

Theorem funtpg 5249
Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.)
Assertion
Ref Expression
funtpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )

Proof of Theorem funtpg
StepHypRef Expression
1 3simpa 989 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( X  e.  U  /\  Y  e.  V
) )
2 3simpa 989 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( A  e.  F  /\  B  e.  G
) )
3 simp1 992 . . . 4  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
4 funprg 5248 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V
)  /\  ( A  e.  F  /\  B  e.  G )  /\  X  =/=  Y )  ->  Fun  {
<. X ,  A >. , 
<. Y ,  B >. } )
51, 2, 3, 4syl3an 1275 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. } )
6 simp13 1024 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Z  e.  W )
7 simp23 1027 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  C  e.  H )
8 funsng 5244 . . . 4  |-  ( ( Z  e.  W  /\  C  e.  H )  ->  Fun  { <. Z ,  C >. } )
96, 7, 8syl2anc 409 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. Z ,  C >. } )
1023ad2ant2 1014 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( A  e.  F  /\  B  e.  G
) )
11 dmpropg 5083 . . . . . 6  |-  ( ( A  e.  F  /\  B  e.  G )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y }
)
1210, 11syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. X ,  A >. ,  <. Y ,  B >. }  =  { X ,  Y } )
13 dmsnopg 5082 . . . . . 6  |-  ( C  e.  H  ->  dom  {
<. Z ,  C >. }  =  { Z }
)
147, 13syl 14 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  dom  { <. Z ,  C >. }  =  { Z } )
1512, 14ineq12d 3329 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  ( { X ,  Y }  i^i  { Z } ) )
16 elpri 3606 . . . . . . . 8  |-  ( Z  e.  { X ,  Y }  ->  ( Z  =  X  \/  Z  =  Y ) )
17 nner 2344 . . . . . . . . . . . 12  |-  ( X  =  Z  ->  -.  X  =/=  Z )
1817eqcoms 2173 . . . . . . . . . . 11  |-  ( Z  =  X  ->  -.  X  =/=  Z )
19 3mix2 1162 . . . . . . . . . . 11  |-  ( -.  X  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2018, 19syl 14 . . . . . . . . . 10  |-  ( Z  =  X  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
21 nner 2344 . . . . . . . . . . . 12  |-  ( Y  =  Z  ->  -.  Y  =/=  Z )
2221eqcoms 2173 . . . . . . . . . . 11  |-  ( Z  =  Y  ->  -.  Y  =/=  Z )
23 3mix3 1163 . . . . . . . . . . 11  |-  ( -.  Y  =/=  Z  -> 
( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
2422, 23syl 14 . . . . . . . . . 10  |-  ( Z  =  Y  ->  ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
) )
2520, 24jaoi 711 . . . . . . . . 9  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  ( -.  X  =/= 
Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z ) )
26 3ianorr 1304 . . . . . . . . 9  |-  ( ( -.  X  =/=  Y  \/  -.  X  =/=  Z  \/  -.  Y  =/=  Z
)  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2725, 26syl 14 . . . . . . . 8  |-  ( ( Z  =  X  \/  Z  =  Y )  ->  -.  ( X  =/= 
Y  /\  X  =/=  Z  /\  Y  =/=  Z
) )
2816, 27syl 14 . . . . . . 7  |-  ( Z  e.  { X ,  Y }  ->  -.  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )
2928con2i 622 . . . . . 6  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
30 disjsn 3645 . . . . . 6  |-  ( ( { X ,  Y }  i^i  { Z }
)  =  (/)  <->  -.  Z  e.  { X ,  Y } )
3129, 30sylibr 133 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  ( { X ,  Y }  i^i  { Z } )  =  (/) )
32313ad2ant3 1015 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { X ,  Y }  i^i  { Z } )  =  (/) )
3315, 32eqtrd 2203 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  {
<. Z ,  C >. } )  =  (/) )
34 funun 5242 . . 3  |-  ( ( ( Fun  { <. X ,  A >. ,  <. Y ,  B >. }  /\  Fun  { <. Z ,  C >. } )  /\  ( dom  { <. X ,  A >. ,  <. Y ,  B >. }  i^i  dom  { <. Z ,  C >. } )  =  (/) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
355, 9, 33, 34syl21anc 1232 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) )
36 df-tp 3591 . . 3  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
3736funeqi 5219 . 2  |-  ( Fun 
{ <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  <->  Fun  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) )
3835, 37sylibr 133 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  Fun  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703    \/ w3o 972    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   {cpr 3584   {ctp 3585   <.cop 3586   dom cdm 4611   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-tp 3591  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-fun 5200
This theorem is referenced by:  fntpg  5254
  Copyright terms: Public domain W3C validator