| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funtpg | Unicode version | ||
| Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) |
| Ref | Expression |
|---|---|
| funtpg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 997 |
. . . 4
| |
| 2 | 3simpa 997 |
. . . 4
| |
| 3 | simp1 1000 |
. . . 4
| |
| 4 | funprg 5324 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | syl3an 1292 |
. . 3
|
| 6 | simp13 1032 |
. . . 4
| |
| 7 | simp23 1035 |
. . . 4
| |
| 8 | funsng 5320 |
. . . 4
| |
| 9 | 6, 7, 8 | syl2anc 411 |
. . 3
|
| 10 | 2 | 3ad2ant2 1022 |
. . . . . 6
|
| 11 | dmpropg 5155 |
. . . . . 6
| |
| 12 | 10, 11 | syl 14 |
. . . . 5
|
| 13 | dmsnopg 5154 |
. . . . . 6
| |
| 14 | 7, 13 | syl 14 |
. . . . 5
|
| 15 | 12, 14 | ineq12d 3375 |
. . . 4
|
| 16 | elpri 3656 |
. . . . . . . 8
| |
| 17 | nner 2380 |
. . . . . . . . . . . 12
| |
| 18 | 17 | eqcoms 2208 |
. . . . . . . . . . 11
|
| 19 | 3mix2 1170 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . . 10
|
| 21 | nner 2380 |
. . . . . . . . . . . 12
| |
| 22 | 21 | eqcoms 2208 |
. . . . . . . . . . 11
|
| 23 | 3mix3 1171 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . 10
|
| 25 | 20, 24 | jaoi 718 |
. . . . . . . . 9
|
| 26 | 3ianorr 1322 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | 16, 27 | syl 14 |
. . . . . . 7
|
| 29 | 28 | con2i 628 |
. . . . . 6
|
| 30 | disjsn 3695 |
. . . . . 6
| |
| 31 | 29, 30 | sylibr 134 |
. . . . 5
|
| 32 | 31 | 3ad2ant3 1023 |
. . . 4
|
| 33 | 15, 32 | eqtrd 2238 |
. . 3
|
| 34 | funun 5315 |
. . 3
| |
| 35 | 5, 9, 33, 34 | syl21anc 1249 |
. 2
|
| 36 | df-tp 3641 |
. . 3
| |
| 37 | 36 | funeqi 5292 |
. 2
|
| 38 | 35, 37 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-fun 5273 |
| This theorem is referenced by: fntpg 5330 |
| Copyright terms: Public domain | W3C validator |