| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > funtpg | Unicode version | ||
| Description: A set of three pairs is a function if their first members are different. (Contributed by Alexander van der Vekens, 5-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| funtpg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simpa 996 | 
. . . 4
 | |
| 2 | 3simpa 996 | 
. . . 4
 | |
| 3 | simp1 999 | 
. . . 4
 | |
| 4 | funprg 5308 | 
. . . 4
 | |
| 5 | 1, 2, 3, 4 | syl3an 1291 | 
. . 3
 | 
| 6 | simp13 1031 | 
. . . 4
 | |
| 7 | simp23 1034 | 
. . . 4
 | |
| 8 | funsng 5304 | 
. . . 4
 | |
| 9 | 6, 7, 8 | syl2anc 411 | 
. . 3
 | 
| 10 | 2 | 3ad2ant2 1021 | 
. . . . . 6
 | 
| 11 | dmpropg 5142 | 
. . . . . 6
 | |
| 12 | 10, 11 | syl 14 | 
. . . . 5
 | 
| 13 | dmsnopg 5141 | 
. . . . . 6
 | |
| 14 | 7, 13 | syl 14 | 
. . . . 5
 | 
| 15 | 12, 14 | ineq12d 3365 | 
. . . 4
 | 
| 16 | elpri 3645 | 
. . . . . . . 8
 | |
| 17 | nner 2371 | 
. . . . . . . . . . . 12
 | |
| 18 | 17 | eqcoms 2199 | 
. . . . . . . . . . 11
 | 
| 19 | 3mix2 1169 | 
. . . . . . . . . . 11
 | |
| 20 | 18, 19 | syl 14 | 
. . . . . . . . . 10
 | 
| 21 | nner 2371 | 
. . . . . . . . . . . 12
 | |
| 22 | 21 | eqcoms 2199 | 
. . . . . . . . . . 11
 | 
| 23 | 3mix3 1170 | 
. . . . . . . . . . 11
 | |
| 24 | 22, 23 | syl 14 | 
. . . . . . . . . 10
 | 
| 25 | 20, 24 | jaoi 717 | 
. . . . . . . . 9
 | 
| 26 | 3ianorr 1320 | 
. . . . . . . . 9
 | |
| 27 | 25, 26 | syl 14 | 
. . . . . . . 8
 | 
| 28 | 16, 27 | syl 14 | 
. . . . . . 7
 | 
| 29 | 28 | con2i 628 | 
. . . . . 6
 | 
| 30 | disjsn 3684 | 
. . . . . 6
 | |
| 31 | 29, 30 | sylibr 134 | 
. . . . 5
 | 
| 32 | 31 | 3ad2ant3 1022 | 
. . . 4
 | 
| 33 | 15, 32 | eqtrd 2229 | 
. . 3
 | 
| 34 | funun 5302 | 
. . 3
 | |
| 35 | 5, 9, 33, 34 | syl21anc 1248 | 
. 2
 | 
| 36 | df-tp 3630 | 
. . 3
 | |
| 37 | 36 | funeqi 5279 | 
. 2
 | 
| 38 | 35, 37 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-fun 5260 | 
| This theorem is referenced by: fntpg 5314 | 
| Copyright terms: Public domain | W3C validator |