ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ianorr GIF version

Theorem 3ianorr 1255
Description: Triple disjunction implies negated triple conjunction. (Contributed by Jim Kingdon, 23-Dec-2018.)
Assertion
Ref Expression
3ianorr ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) → ¬ (𝜑𝜓𝜒))

Proof of Theorem 3ianorr
StepHypRef Expression
1 simp1 949 . . 3 ((𝜑𝜓𝜒) → 𝜑)
21con3i 602 . 2 𝜑 → ¬ (𝜑𝜓𝜒))
3 simp2 950 . . 3 ((𝜑𝜓𝜒) → 𝜓)
43con3i 602 . 2 𝜓 → ¬ (𝜑𝜓𝜒))
5 simp3 951 . . 3 ((𝜑𝜓𝜒) → 𝜒)
65con3i 602 . 2 𝜒 → ¬ (𝜑𝜓𝜒))
72, 4, 63jaoi 1249 1 ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) → ¬ (𝜑𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3o 929  w3a 930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932
This theorem is referenced by:  funtpg  5110
  Copyright terms: Public domain W3C validator