ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ianorr GIF version

Theorem 3ianorr 1304
Description: Triple disjunction implies negated triple conjunction. (Contributed by Jim Kingdon, 23-Dec-2018.)
Assertion
Ref Expression
3ianorr ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) → ¬ (𝜑𝜓𝜒))

Proof of Theorem 3ianorr
StepHypRef Expression
1 simp1 992 . . 3 ((𝜑𝜓𝜒) → 𝜑)
21con3i 627 . 2 𝜑 → ¬ (𝜑𝜓𝜒))
3 simp2 993 . . 3 ((𝜑𝜓𝜒) → 𝜓)
43con3i 627 . 2 𝜓 → ¬ (𝜑𝜓𝜒))
5 simp3 994 . . 3 ((𝜑𝜓𝜒) → 𝜒)
65con3i 627 . 2 𝜒 → ¬ (𝜑𝜓𝜒))
72, 4, 63jaoi 1298 1 ((¬ 𝜑 ∨ ¬ 𝜓 ∨ ¬ 𝜒) → ¬ (𝜑𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3o 972  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975
This theorem is referenced by:  funtpg  5249
  Copyright terms: Public domain W3C validator