![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3jaoi | Unicode version |
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3jaoi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3jaoi.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3jaoi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3jaoi.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3jaoi.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3pm3.2i 1177 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 3jao 1312 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 |
This theorem is referenced by: 3jaoian 1316 3ianorr 1320 acexmidlem1 5914 nndceq 6552 nndcel 6553 znegcl 9348 xrltnr 9845 nltpnft 9880 ngtmnft 9883 xrrebnd 9885 xnegcl 9898 xnegneg 9899 xltnegi 9901 xrpnfdc 9908 xrmnfdc 9909 xnegid 9925 xaddid1 9928 xposdif 9948 prm23lt5 12401 zabsle1 15115 gausslemma2dlem0f 15170 gausslemma2dlem0i 15173 |
Copyright terms: Public domain | W3C validator |