![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3jaoi | Unicode version |
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3jaoi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3jaoi.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3jaoi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3jaoi.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3jaoi.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3pm3.2i 1177 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 3jao 1312 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 |
This theorem is referenced by: 3jaoian 1316 3ianorr 1320 acexmidlem1 5915 nndceq 6554 nndcel 6555 znegcl 9351 xrltnr 9848 nltpnft 9883 ngtmnft 9886 xrrebnd 9888 xnegcl 9901 xnegneg 9902 xltnegi 9904 xrpnfdc 9911 xrmnfdc 9912 xnegid 9928 xaddid1 9931 xposdif 9951 prm23lt5 12404 zabsle1 15156 gausslemma2dlem0f 15211 gausslemma2dlem0i 15214 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |