![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3jaoi | Unicode version |
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3jaoi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3jaoi.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3jaoi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3jaoi.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3jaoi.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3pm3.2i 1175 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 3jao 1301 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 |
This theorem is referenced by: 3jaoian 1305 3ianorr 1309 acexmidlem1 5874 nndceq 6503 nndcel 6504 znegcl 9287 xrltnr 9782 nltpnft 9817 ngtmnft 9820 xrrebnd 9822 xnegcl 9835 xnegneg 9836 xltnegi 9838 xrpnfdc 9845 xrmnfdc 9846 xnegid 9862 xaddid1 9865 xposdif 9885 prm23lt5 12266 zabsle1 14588 |
Copyright terms: Public domain | W3C validator |