ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaoi Unicode version

Theorem 3jaoi 1314
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.)
Hypotheses
Ref Expression
3jaoi.1  |-  ( ph  ->  ps )
3jaoi.2  |-  ( ch 
->  ps )
3jaoi.3  |-  ( th 
->  ps )
Assertion
Ref Expression
3jaoi  |-  ( (
ph  \/  ch  \/  th )  ->  ps )

Proof of Theorem 3jaoi
StepHypRef Expression
1 3jaoi.1 . . 3  |-  ( ph  ->  ps )
2 3jaoi.2 . . 3  |-  ( ch 
->  ps )
3 3jaoi.3 . . 3  |-  ( th 
->  ps )
41, 2, 33pm3.2i 1177 . 2  |-  ( (
ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th  ->  ps ) )
5 3jao 1312 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ch  ->  ps )  /\  ( th 
->  ps ) )  -> 
( ( ph  \/  ch  \/  th )  ->  ps ) )
64, 5ax-mp 5 1  |-  ( (
ph  \/  ch  \/  th )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 979    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982
This theorem is referenced by:  3jaoian  1316  3ianorr  1320  acexmidlem1  5921  nndceq  6566  nndcel  6567  znegcl  9374  xrltnr  9871  nltpnft  9906  ngtmnft  9909  xrrebnd  9911  xnegcl  9924  xnegneg  9925  xltnegi  9927  xrpnfdc  9934  xrmnfdc  9935  xnegid  9951  xaddid1  9954  xposdif  9974  prm23lt5  12457  zabsle1  15324  gausslemma2dlem0f  15379  gausslemma2dlem0i  15382  2lgsoddprm  15438
  Copyright terms: Public domain W3C validator