| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaoi | Unicode version | ||
| Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3jaoi.1 |
|
| 3jaoi.2 |
|
| 3jaoi.3 |
|
| Ref | Expression |
|---|---|
| 3jaoi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoi.1 |
. . 3
| |
| 2 | 3jaoi.2 |
. . 3
| |
| 3 | 3jaoi.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3pm3.2i 1178 |
. 2
|
| 5 | 3jao 1314 |
. 2
| |
| 6 | 4, 5 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 |
| This theorem is referenced by: 3jaoian 1318 3ianorr 1322 acexmidlem1 5963 nndceq 6608 nndcel 6609 znegcl 9438 xrltnr 9936 nltpnft 9971 ngtmnft 9974 xrrebnd 9976 xnegcl 9989 xnegneg 9990 xltnegi 9992 xrpnfdc 9999 xrmnfdc 10000 xnegid 10016 xaddid1 10019 xposdif 10039 prm23lt5 12701 zabsle1 15591 gausslemma2dlem0f 15646 gausslemma2dlem0i 15649 2lgsoddprm 15705 |
| Copyright terms: Public domain | W3C validator |