| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaoi | Unicode version | ||
| Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3jaoi.1 |
|
| 3jaoi.2 |
|
| 3jaoi.3 |
|
| Ref | Expression |
|---|---|
| 3jaoi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoi.1 |
. . 3
| |
| 2 | 3jaoi.2 |
. . 3
| |
| 3 | 3jaoi.3 |
. . 3
| |
| 4 | 1, 2, 3 | 3pm3.2i 1177 |
. 2
|
| 5 | 3jao 1312 |
. 2
| |
| 6 | 4, 5 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 |
| This theorem is referenced by: 3jaoian 1316 3ianorr 1320 acexmidlem1 5921 nndceq 6566 nndcel 6567 znegcl 9374 xrltnr 9871 nltpnft 9906 ngtmnft 9909 xrrebnd 9911 xnegcl 9924 xnegneg 9925 xltnegi 9927 xrpnfdc 9934 xrmnfdc 9935 xnegid 9951 xaddid1 9954 xposdif 9974 prm23lt5 12457 zabsle1 15324 gausslemma2dlem0f 15379 gausslemma2dlem0i 15382 2lgsoddprm 15438 |
| Copyright terms: Public domain | W3C validator |