| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3jaoi | Unicode version | ||
| Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) | 
| Ref | Expression | 
|---|---|
| 3jaoi.1 | 
 | 
| 3jaoi.2 | 
 | 
| 3jaoi.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3jaoi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3jaoi.1 | 
. . 3
 | |
| 2 | 3jaoi.2 | 
. . 3
 | |
| 3 | 3jaoi.3 | 
. . 3
 | |
| 4 | 1, 2, 3 | 3pm3.2i 1177 | 
. 2
 | 
| 5 | 3jao 1312 | 
. 2
 | |
| 6 | 4, 5 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 | 
| This theorem is referenced by: 3jaoian 1316 3ianorr 1320 acexmidlem1 5918 nndceq 6557 nndcel 6558 znegcl 9357 xrltnr 9854 nltpnft 9889 ngtmnft 9892 xrrebnd 9894 xnegcl 9907 xnegneg 9908 xltnegi 9910 xrpnfdc 9917 xrmnfdc 9918 xnegid 9934 xaddid1 9937 xposdif 9957 prm23lt5 12432 zabsle1 15240 gausslemma2dlem0f 15295 gausslemma2dlem0i 15298 2lgsoddprm 15354 | 
| Copyright terms: Public domain | W3C validator |