ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impexpbicomi Unicode version

Theorem 3impexpbicomi 1419
Description: Deduction form of 3impexpbicom 1418. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
3impexpbicomi.1  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  <->  ta )
)
Assertion
Ref Expression
3impexpbicomi  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) )

Proof of Theorem 3impexpbicomi
StepHypRef Expression
1 3impexpbicomi.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  <->  ta )
)
21bicomd 140 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ( ta  <->  th )
)
323exp 1184 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ta  <->  th )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator