| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3impexpbicomi | GIF version | ||
| Description: Deduction form of 3impexpbicom 1449. (Contributed by Alan Sare, 31-Dec-2011.) | 
| Ref | Expression | 
|---|---|
| 3impexpbicomi.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) | 
| Ref | Expression | 
|---|---|
| 3impexpbicomi | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3impexpbicomi.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃)) | 
| 3 | 2 | 3exp 1204 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |