ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impexpbicomi GIF version

Theorem 3impexpbicomi 1427
Description: Deduction form of 3impexpbicom 1426. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
3impexpbicomi.1 ((𝜑𝜓𝜒) → (𝜃𝜏))
Assertion
Ref Expression
3impexpbicomi (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))

Proof of Theorem 3impexpbicomi
StepHypRef Expression
1 3impexpbicomi.1 . . 3 ((𝜑𝜓𝜒) → (𝜃𝜏))
21bicomd 140 . 2 ((𝜑𝜓𝜒) → (𝜏𝜃))
323exp 1192 1 (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator