ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomsimp Unicode version

Theorem ancomsimp 1433
Description: Closed form of ancoms 266. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomsimp  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )

Proof of Theorem ancomsimp
StepHypRef Expression
1 ancom 264 . 2  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21imbi1i 237 1  |-  ( ( ( ph  /\  ps )  ->  ch )  <->  ( ( ps  /\  ph )  ->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ralcomf  2631
  Copyright terms: Public domain W3C validator