ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix2d Unicode version

Theorem 3mix2d 1168
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
3mix2d  |-  ( ph  ->  ( ch  \/  ps  \/  th ) )

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2  |-  ( ph  ->  ps )
2 3mix2 1162 . 2  |-  ( ps 
->  ( ch  \/  ps  \/  th ) )
31, 2syl 14 1  |-  ( ph  ->  ( ch  \/  ps  \/  th ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116  df-3or 974
This theorem is referenced by:  exmidontriimlem3  7189  fztri3or  9984  trirec0  14038
  Copyright terms: Public domain W3C validator