ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix2 Unicode version

Theorem 3mix2 1169
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix2  |-  ( ph  ->  ( ps  \/  ph  \/  ch ) )

Proof of Theorem 3mix2
StepHypRef Expression
1 3mix1 1168 . 2  |-  ( ph  ->  ( ph  \/  ch  \/  ps ) )
2 3orrot 986 . 2  |-  ( ( ps  \/  ph  \/  ch )  <->  ( ph  \/  ch  \/  ps ) )
31, 2sylibr 134 1  |-  ( ph  ->  ( ps  \/  ph  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981
This theorem is referenced by:  3mix2i  1172  3mix2d  1175  3jaob  1313  funtpg  5305  elnn0z  9330  nn0le2is012  9399  nn01to3  9682  zabsle1  15115  triap  15519
  Copyright terms: Public domain W3C validator