ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix2d GIF version

Theorem 3mix2d 1163
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1157 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 14 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 969
This theorem is referenced by:  exmidontriimlem3  7179  fztri3or  9974  trirec0  13923
  Copyright terms: Public domain W3C validator