| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontriimlem3 | Unicode version | ||
| Description: Lemma for exmidontriim 7292. What we get to do based on induction on
both
|
| Ref | Expression |
|---|---|
| exmidontriimlem3.a |
|
| exmidontriimlem3.b |
|
| exmidontriimlem3.em |
|
| exmidontriimlem3.ha |
|
| exmidontriimlem3.hb |
|
| Ref | Expression |
|---|---|
| exmidontriimlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1168 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | 3mix3 1170 |
. . . 4
| |
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | dfss3 3173 |
. . . . . 6
| |
| 7 | 5, 6 | sylibr 134 |
. . . . 5
|
| 8 | simplr 528 |
. . . . . 6
| |
| 9 | dfss3 3173 |
. . . . . 6
| |
| 10 | 8, 9 | sylibr 134 |
. . . . 5
|
| 11 | 7, 10 | eqssd 3200 |
. . . 4
|
| 12 | 11 | 3mix2d 1175 |
. . 3
|
| 13 | exmidontriimlem3.a |
. . . . 5
| |
| 14 | exmidontriimlem3.em |
. . . . 5
| |
| 15 | exmidontriimlem3.b |
. . . . . . 7
| |
| 16 | exmidontriimlem3.ha |
. . . . . . . 8
| |
| 17 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 18 | equequ1 1726 |
. . . . . . . . . . 11
| |
| 19 | eleq2 2260 |
. . . . . . . . . . 11
| |
| 20 | 17, 18, 19 | 3orbi123d 1322 |
. . . . . . . . . 10
|
| 21 | 20 | ralbidv 2497 |
. . . . . . . . 9
|
| 22 | 21 | cbvralv 2729 |
. . . . . . . 8
|
| 23 | 16, 22 | sylib 122 |
. . . . . . 7
|
| 24 | eleq2 2260 |
. . . . . . . . . 10
| |
| 25 | eqeq2 2206 |
. . . . . . . . . 10
| |
| 26 | eleq1 2259 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | 3orbi123d 1322 |
. . . . . . . . 9
|
| 28 | 27 | rspcv 2864 |
. . . . . . . 8
|
| 29 | 28 | ralimdv 2565 |
. . . . . . 7
|
| 30 | 15, 23, 29 | sylc 62 |
. . . . . 6
|
| 31 | biid 171 |
. . . . . . . . 9
| |
| 32 | eqcom 2198 |
. . . . . . . . 9
| |
| 33 | biid 171 |
. . . . . . . . 9
| |
| 34 | 31, 32, 33 | 3orbi123i 1191 |
. . . . . . . 8
|
| 35 | 3orcomb 989 |
. . . . . . . 8
| |
| 36 | 3orrot 986 |
. . . . . . . 8
| |
| 37 | 34, 35, 36 | 3bitri 206 |
. . . . . . 7
|
| 38 | 37 | ralbii 2503 |
. . . . . 6
|
| 39 | 30, 38 | sylib 122 |
. . . . 5
|
| 40 | 13, 14, 39 | exmidontriimlem2 7289 |
. . . 4
|
| 41 | 40 | adantr 276 |
. . 3
|
| 42 | 4, 12, 41 | mpjaodan 799 |
. 2
|
| 43 | exmidontriimlem3.hb |
. . . 4
| |
| 44 | eleq2 2260 |
. . . . . 6
| |
| 45 | eqeq2 2206 |
. . . . . 6
| |
| 46 | eleq1 2259 |
. . . . . 6
| |
| 47 | 44, 45, 46 | 3orbi123d 1322 |
. . . . 5
|
| 48 | 47 | cbvralv 2729 |
. . . 4
|
| 49 | 43, 48 | sylib 122 |
. . 3
|
| 50 | 15, 14, 49 | exmidontriimlem2 7289 |
. 2
|
| 51 | 2, 42, 50 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-uni 3840 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 |
| This theorem is referenced by: exmidontriimlem4 7291 |
| Copyright terms: Public domain | W3C validator |