| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidontriimlem3 | Unicode version | ||
| Description: Lemma for exmidontriim 7407. What we get to do based on induction on
both
|
| Ref | Expression |
|---|---|
| exmidontriimlem3.a |
|
| exmidontriimlem3.b |
|
| exmidontriimlem3.em |
|
| exmidontriimlem3.ha |
|
| exmidontriimlem3.hb |
|
| Ref | Expression |
|---|---|
| exmidontriimlem3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix1 1190 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | 3mix3 1192 |
. . . 4
| |
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | dfss3 3213 |
. . . . . 6
| |
| 7 | 5, 6 | sylibr 134 |
. . . . 5
|
| 8 | simplr 528 |
. . . . . 6
| |
| 9 | dfss3 3213 |
. . . . . 6
| |
| 10 | 8, 9 | sylibr 134 |
. . . . 5
|
| 11 | 7, 10 | eqssd 3241 |
. . . 4
|
| 12 | 11 | 3mix2d 1197 |
. . 3
|
| 13 | exmidontriimlem3.a |
. . . . 5
| |
| 14 | exmidontriimlem3.em |
. . . . 5
| |
| 15 | exmidontriimlem3.b |
. . . . . . 7
| |
| 16 | exmidontriimlem3.ha |
. . . . . . . 8
| |
| 17 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 18 | equequ1 1758 |
. . . . . . . . . . 11
| |
| 19 | eleq2 2293 |
. . . . . . . . . . 11
| |
| 20 | 17, 18, 19 | 3orbi123d 1345 |
. . . . . . . . . 10
|
| 21 | 20 | ralbidv 2530 |
. . . . . . . . 9
|
| 22 | 21 | cbvralv 2765 |
. . . . . . . 8
|
| 23 | 16, 22 | sylib 122 |
. . . . . . 7
|
| 24 | eleq2 2293 |
. . . . . . . . . 10
| |
| 25 | eqeq2 2239 |
. . . . . . . . . 10
| |
| 26 | eleq1 2292 |
. . . . . . . . . 10
| |
| 27 | 24, 25, 26 | 3orbi123d 1345 |
. . . . . . . . 9
|
| 28 | 27 | rspcv 2903 |
. . . . . . . 8
|
| 29 | 28 | ralimdv 2598 |
. . . . . . 7
|
| 30 | 15, 23, 29 | sylc 62 |
. . . . . 6
|
| 31 | biid 171 |
. . . . . . . . 9
| |
| 32 | eqcom 2231 |
. . . . . . . . 9
| |
| 33 | biid 171 |
. . . . . . . . 9
| |
| 34 | 31, 32, 33 | 3orbi123i 1213 |
. . . . . . . 8
|
| 35 | 3orcomb 1011 |
. . . . . . . 8
| |
| 36 | 3orrot 1008 |
. . . . . . . 8
| |
| 37 | 34, 35, 36 | 3bitri 206 |
. . . . . . 7
|
| 38 | 37 | ralbii 2536 |
. . . . . 6
|
| 39 | 30, 38 | sylib 122 |
. . . . 5
|
| 40 | 13, 14, 39 | exmidontriimlem2 7404 |
. . . 4
|
| 41 | 40 | adantr 276 |
. . 3
|
| 42 | 4, 12, 41 | mpjaodan 803 |
. 2
|
| 43 | exmidontriimlem3.hb |
. . . 4
| |
| 44 | eleq2 2293 |
. . . . . 6
| |
| 45 | eqeq2 2239 |
. . . . . 6
| |
| 46 | eleq1 2292 |
. . . . . 6
| |
| 47 | 44, 45, 46 | 3orbi123d 1345 |
. . . . 5
|
| 48 | 47 | cbvralv 2765 |
. . . 4
|
| 49 | 43, 48 | sylib 122 |
. . 3
|
| 50 | 15, 14, 49 | exmidontriimlem2 7404 |
. 2
|
| 51 | 2, 42, 50 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-uni 3889 df-tr 4183 df-exmid 4279 df-iord 4457 df-on 4459 |
| This theorem is referenced by: exmidontriimlem4 7406 |
| Copyright terms: Public domain | W3C validator |