Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriimlem3 | Unicode version |
Description: Lemma for exmidontriim 7161. What we get to do based on induction on both and . (Contributed by Jim Kingdon, 10-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem3.a | |
exmidontriimlem3.b | |
exmidontriimlem3.em | EXMID |
exmidontriimlem3.ha | |
exmidontriimlem3.hb |
Ref | Expression |
---|---|
exmidontriimlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1151 | . . 3 | |
2 | 1 | adantl 275 | . 2 |
3 | 3mix3 1153 | . . . 4 | |
4 | 3 | adantl 275 | . . 3 |
5 | simpr 109 | . . . . . 6 | |
6 | dfss3 3118 | . . . . . 6 | |
7 | 5, 6 | sylibr 133 | . . . . 5 |
8 | simplr 520 | . . . . . 6 | |
9 | dfss3 3118 | . . . . . 6 | |
10 | 8, 9 | sylibr 133 | . . . . 5 |
11 | 7, 10 | eqssd 3145 | . . . 4 |
12 | 11 | 3mix2d 1158 | . . 3 |
13 | exmidontriimlem3.a | . . . . 5 | |
14 | exmidontriimlem3.em | . . . . 5 EXMID | |
15 | exmidontriimlem3.b | . . . . . . 7 | |
16 | exmidontriimlem3.ha | . . . . . . . 8 | |
17 | eleq1 2220 | . . . . . . . . . . 11 | |
18 | equequ1 1692 | . . . . . . . . . . 11 | |
19 | eleq2 2221 | . . . . . . . . . . 11 | |
20 | 17, 18, 19 | 3orbi123d 1293 | . . . . . . . . . 10 |
21 | 20 | ralbidv 2457 | . . . . . . . . 9 |
22 | 21 | cbvralv 2680 | . . . . . . . 8 |
23 | 16, 22 | sylib 121 | . . . . . . 7 |
24 | eleq2 2221 | . . . . . . . . . 10 | |
25 | eqeq2 2167 | . . . . . . . . . 10 | |
26 | eleq1 2220 | . . . . . . . . . 10 | |
27 | 24, 25, 26 | 3orbi123d 1293 | . . . . . . . . 9 |
28 | 27 | rspcv 2812 | . . . . . . . 8 |
29 | 28 | ralimdv 2525 | . . . . . . 7 |
30 | 15, 23, 29 | sylc 62 | . . . . . 6 |
31 | biid 170 | . . . . . . . . 9 | |
32 | eqcom 2159 | . . . . . . . . 9 | |
33 | biid 170 | . . . . . . . . 9 | |
34 | 31, 32, 33 | 3orbi123i 1172 | . . . . . . . 8 |
35 | 3orcomb 972 | . . . . . . . 8 | |
36 | 3orrot 969 | . . . . . . . 8 | |
37 | 34, 35, 36 | 3bitri 205 | . . . . . . 7 |
38 | 37 | ralbii 2463 | . . . . . 6 |
39 | 30, 38 | sylib 121 | . . . . 5 |
40 | 13, 14, 39 | exmidontriimlem2 7158 | . . . 4 |
41 | 40 | adantr 274 | . . 3 |
42 | 4, 12, 41 | mpjaodan 788 | . 2 |
43 | exmidontriimlem3.hb | . . . 4 | |
44 | eleq2 2221 | . . . . . 6 | |
45 | eqeq2 2167 | . . . . . 6 | |
46 | eleq1 2220 | . . . . . 6 | |
47 | 44, 45, 46 | 3orbi123d 1293 | . . . . 5 |
48 | 47 | cbvralv 2680 | . . . 4 |
49 | 43, 48 | sylib 121 | . . 3 |
50 | 15, 14, 49 | exmidontriimlem2 7158 | . 2 |
51 | 2, 42, 50 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3o 962 wceq 1335 wcel 2128 wral 2435 wss 3102 EXMIDwem 4156 con0 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-nul 4091 ax-pow 4136 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-uni 3774 df-tr 4064 df-exmid 4157 df-iord 4327 df-on 4329 |
This theorem is referenced by: exmidontriimlem4 7160 |
Copyright terms: Public domain | W3C validator |