Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriimlem3 | Unicode version |
Description: Lemma for exmidontriim 7181. What we get to do based on induction on both and . (Contributed by Jim Kingdon, 10-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem3.a | |
exmidontriimlem3.b | |
exmidontriimlem3.em | EXMID |
exmidontriimlem3.ha | |
exmidontriimlem3.hb |
Ref | Expression |
---|---|
exmidontriimlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix1 1156 | . . 3 | |
2 | 1 | adantl 275 | . 2 |
3 | 3mix3 1158 | . . . 4 | |
4 | 3 | adantl 275 | . . 3 |
5 | simpr 109 | . . . . . 6 | |
6 | dfss3 3132 | . . . . . 6 | |
7 | 5, 6 | sylibr 133 | . . . . 5 |
8 | simplr 520 | . . . . . 6 | |
9 | dfss3 3132 | . . . . . 6 | |
10 | 8, 9 | sylibr 133 | . . . . 5 |
11 | 7, 10 | eqssd 3159 | . . . 4 |
12 | 11 | 3mix2d 1163 | . . 3 |
13 | exmidontriimlem3.a | . . . . 5 | |
14 | exmidontriimlem3.em | . . . . 5 EXMID | |
15 | exmidontriimlem3.b | . . . . . . 7 | |
16 | exmidontriimlem3.ha | . . . . . . . 8 | |
17 | eleq1 2229 | . . . . . . . . . . 11 | |
18 | equequ1 1700 | . . . . . . . . . . 11 | |
19 | eleq2 2230 | . . . . . . . . . . 11 | |
20 | 17, 18, 19 | 3orbi123d 1301 | . . . . . . . . . 10 |
21 | 20 | ralbidv 2466 | . . . . . . . . 9 |
22 | 21 | cbvralv 2692 | . . . . . . . 8 |
23 | 16, 22 | sylib 121 | . . . . . . 7 |
24 | eleq2 2230 | . . . . . . . . . 10 | |
25 | eqeq2 2175 | . . . . . . . . . 10 | |
26 | eleq1 2229 | . . . . . . . . . 10 | |
27 | 24, 25, 26 | 3orbi123d 1301 | . . . . . . . . 9 |
28 | 27 | rspcv 2826 | . . . . . . . 8 |
29 | 28 | ralimdv 2534 | . . . . . . 7 |
30 | 15, 23, 29 | sylc 62 | . . . . . 6 |
31 | biid 170 | . . . . . . . . 9 | |
32 | eqcom 2167 | . . . . . . . . 9 | |
33 | biid 170 | . . . . . . . . 9 | |
34 | 31, 32, 33 | 3orbi123i 1179 | . . . . . . . 8 |
35 | 3orcomb 977 | . . . . . . . 8 | |
36 | 3orrot 974 | . . . . . . . 8 | |
37 | 34, 35, 36 | 3bitri 205 | . . . . . . 7 |
38 | 37 | ralbii 2472 | . . . . . 6 |
39 | 30, 38 | sylib 121 | . . . . 5 |
40 | 13, 14, 39 | exmidontriimlem2 7178 | . . . 4 |
41 | 40 | adantr 274 | . . 3 |
42 | 4, 12, 41 | mpjaodan 788 | . 2 |
43 | exmidontriimlem3.hb | . . . 4 | |
44 | eleq2 2230 | . . . . . 6 | |
45 | eqeq2 2175 | . . . . . 6 | |
46 | eleq1 2229 | . . . . . 6 | |
47 | 44, 45, 46 | 3orbi123d 1301 | . . . . 5 |
48 | 47 | cbvralv 2692 | . . . 4 |
49 | 43, 48 | sylib 121 | . . 3 |
50 | 15, 14, 49 | exmidontriimlem2 7178 | . 2 |
51 | 2, 42, 50 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3o 967 wceq 1343 wcel 2136 wral 2444 wss 3116 EXMIDwem 4173 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 |
This theorem is referenced by: exmidontriimlem4 7180 |
Copyright terms: Public domain | W3C validator |