| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > trirec0 | Unicode version | ||
| Description: Every real number having
a reciprocal or equaling zero is equivalent to
real number trichotomy.
This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 16411). (Contributed by Jim Kingdon, 10-Jun-2024.) |
| Ref | Expression |
|---|---|
| trirec0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . 6
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | 1, 2 | lt0ap0d 8796 |
. . . . . 6
|
| 4 | rerecclap 8877 |
. . . . . . 7
| |
| 5 | recn 8132 |
. . . . . . . 8
| |
| 6 | recidap 8833 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylan 283 |
. . . . . . 7
|
| 8 | oveq2 6009 |
. . . . . . . . 9
| |
| 9 | 8 | eqeq1d 2238 |
. . . . . . . 8
|
| 10 | 9 | rspcev 2907 |
. . . . . . 7
|
| 11 | 4, 7, 10 | syl2anc 411 |
. . . . . 6
|
| 12 | 1, 3, 11 | syl2anc 411 |
. . . . 5
|
| 13 | 12 | orcd 738 |
. . . 4
|
| 14 | simpr 110 |
. . . . 5
| |
| 15 | 14 | olcd 739 |
. . . 4
|
| 16 | simpll 527 |
. . . . . 6
| |
| 17 | simpr 110 |
. . . . . . 7
| |
| 18 | 16, 17 | gt0ap0d 8776 |
. . . . . 6
|
| 19 | 16, 18, 11 | syl2anc 411 |
. . . . 5
|
| 20 | 19 | orcd 738 |
. . . 4
|
| 21 | 0re 8146 |
. . . . . 6
| |
| 22 | breq2 4087 |
. . . . . . . 8
| |
| 23 | eqeq2 2239 |
. . . . . . . 8
| |
| 24 | breq1 4086 |
. . . . . . . 8
| |
| 25 | 22, 23, 24 | 3orbi123d 1345 |
. . . . . . 7
|
| 26 | 25 | rspcv 2903 |
. . . . . 6
|
| 27 | 21, 26 | ax-mp 5 |
. . . . 5
|
| 28 | 27 | adantl 277 |
. . . 4
|
| 29 | 13, 15, 20, 28 | mpjao3dan 1341 |
. . 3
|
| 30 | 29 | ralimiaa 2592 |
. 2
|
| 31 | oveq1 6008 |
. . . . . . 7
| |
| 32 | 31 | eqeq1d 2238 |
. . . . . 6
|
| 33 | 32 | rexbidv 2531 |
. . . . 5
|
| 34 | eqeq1 2236 |
. . . . 5
| |
| 35 | 33, 34 | orbi12d 798 |
. . . 4
|
| 36 | 35 | cbvralv 2765 |
. . 3
|
| 37 | nfcv 2372 |
. . . . . . . . 9
| |
| 38 | nfre1 2573 |
. . . . . . . . . 10
| |
| 39 | nfv 1574 |
. . . . . . . . . 10
| |
| 40 | 38, 39 | nfor 1620 |
. . . . . . . . 9
|
| 41 | 37, 40 | nfralya 2570 |
. . . . . . . 8
|
| 42 | nfv 1574 |
. . . . . . . 8
| |
| 43 | 41, 42 | nfan 1611 |
. . . . . . 7
|
| 44 | nfv 1574 |
. . . . . . 7
| |
| 45 | simpr 110 |
. . . . . . . . . . 11
| |
| 46 | simprr 531 |
. . . . . . . . . . . . . 14
| |
| 47 | 46 | ad2antrr 488 |
. . . . . . . . . . . . 13
|
| 48 | 47 | adantr 276 |
. . . . . . . . . . . 12
|
| 49 | simprl 529 |
. . . . . . . . . . . . . 14
| |
| 50 | 49 | ad2antrr 488 |
. . . . . . . . . . . . 13
|
| 51 | 50 | adantr 276 |
. . . . . . . . . . . 12
|
| 52 | 48, 51 | sublt0d 8717 |
. . . . . . . . . . 11
|
| 53 | 45, 52 | mpbid 147 |
. . . . . . . . . 10
|
| 54 | 53 | 3mix3d 1198 |
. . . . . . . . 9
|
| 55 | simpr 110 |
. . . . . . . . . . 11
| |
| 56 | 50 | adantr 276 |
. . . . . . . . . . . 12
|
| 57 | 47 | adantr 276 |
. . . . . . . . . . . 12
|
| 58 | 56, 57 | posdifd 8679 |
. . . . . . . . . . 11
|
| 59 | 55, 58 | mpbird 167 |
. . . . . . . . . 10
|
| 60 | 59 | 3mix1d 1196 |
. . . . . . . . 9
|
| 61 | 47 | recnd 8175 |
. . . . . . . . . . . 12
|
| 62 | 50 | recnd 8175 |
. . . . . . . . . . . 12
|
| 63 | 61, 62 | subcld 8457 |
. . . . . . . . . . 11
|
| 64 | simplr 528 |
. . . . . . . . . . . 12
| |
| 65 | 64 | recnd 8175 |
. . . . . . . . . . 11
|
| 66 | simpr 110 |
. . . . . . . . . . . 12
| |
| 67 | 1ap0 8737 |
. . . . . . . . . . . 12
| |
| 68 | 66, 67 | eqbrtrdi 4122 |
. . . . . . . . . . 11
|
| 69 | 63, 65, 68 | mulap0bad 8806 |
. . . . . . . . . 10
|
| 70 | 46, 49 | resubcld 8527 |
. . . . . . . . . . . 12
|
| 71 | 70 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 72 | reaplt 8735 |
. . . . . . . . . . 11
| |
| 73 | 71, 21, 72 | sylancl 413 |
. . . . . . . . . 10
|
| 74 | 69, 73 | mpbid 147 |
. . . . . . . . 9
|
| 75 | 54, 60, 74 | mpjaodan 803 |
. . . . . . . 8
|
| 76 | 75 | exp31 364 |
. . . . . . 7
|
| 77 | 43, 44, 76 | rexlimd 2645 |
. . . . . 6
|
| 78 | 77 | imp 124 |
. . . . 5
|
| 79 | 46 | recnd 8175 |
. . . . . . . . 9
|
| 80 | 79 | adantr 276 |
. . . . . . . 8
|
| 81 | 49 | recnd 8175 |
. . . . . . . . 9
|
| 82 | 81 | adantr 276 |
. . . . . . . 8
|
| 83 | simpr 110 |
. . . . . . . 8
| |
| 84 | 80, 82, 83 | subeq0d 8465 |
. . . . . . 7
|
| 85 | 84 | equcomd 1753 |
. . . . . 6
|
| 86 | 85 | 3mix2d 1197 |
. . . . 5
|
| 87 | oveq1 6008 |
. . . . . . . . 9
| |
| 88 | 87 | eqeq1d 2238 |
. . . . . . . 8
|
| 89 | 88 | rexbidv 2531 |
. . . . . . 7
|
| 90 | eqeq1 2236 |
. . . . . . 7
| |
| 91 | 89, 90 | orbi12d 798 |
. . . . . 6
|
| 92 | simpl 109 |
. . . . . 6
| |
| 93 | 91, 92, 70 | rspcdva 2912 |
. . . . 5
|
| 94 | 78, 86, 93 | mpjaodan 803 |
. . . 4
|
| 95 | 94 | ralrimivva 2612 |
. . 3
|
| 96 | 36, 95 | sylbi 121 |
. 2
|
| 97 | 30, 96 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 |
| This theorem is referenced by: trirec0xor 16413 |
| Copyright terms: Public domain | W3C validator |