Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > trirec0 | Unicode version |
Description: Every real number having
a reciprocal or equaling zero is equivalent to
real number trichotomy.
This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 14075). (Contributed by Jim Kingdon, 10-Jun-2024.) |
Ref | Expression |
---|---|
trirec0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . . . . . 6 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 1, 2 | lt0ap0d 8568 | . . . . . 6 # |
4 | rerecclap 8647 | . . . . . . 7 # | |
5 | recn 7907 | . . . . . . . 8 | |
6 | recidap 8603 | . . . . . . . 8 # | |
7 | 5, 6 | sylan 281 | . . . . . . 7 # |
8 | oveq2 5861 | . . . . . . . . 9 | |
9 | 8 | eqeq1d 2179 | . . . . . . . 8 |
10 | 9 | rspcev 2834 | . . . . . . 7 |
11 | 4, 7, 10 | syl2anc 409 | . . . . . 6 # |
12 | 1, 3, 11 | syl2anc 409 | . . . . 5 |
13 | 12 | orcd 728 | . . . 4 |
14 | simpr 109 | . . . . 5 | |
15 | 14 | olcd 729 | . . . 4 |
16 | simpll 524 | . . . . . 6 | |
17 | simpr 109 | . . . . . . 7 | |
18 | 16, 17 | gt0ap0d 8548 | . . . . . 6 # |
19 | 16, 18, 11 | syl2anc 409 | . . . . 5 |
20 | 19 | orcd 728 | . . . 4 |
21 | 0re 7920 | . . . . . 6 | |
22 | breq2 3993 | . . . . . . . 8 | |
23 | eqeq2 2180 | . . . . . . . 8 | |
24 | breq1 3992 | . . . . . . . 8 | |
25 | 22, 23, 24 | 3orbi123d 1306 | . . . . . . 7 |
26 | 25 | rspcv 2830 | . . . . . 6 |
27 | 21, 26 | ax-mp 5 | . . . . 5 |
28 | 27 | adantl 275 | . . . 4 |
29 | 13, 15, 20, 28 | mpjao3dan 1302 | . . 3 |
30 | 29 | ralimiaa 2532 | . 2 |
31 | oveq1 5860 | . . . . . . 7 | |
32 | 31 | eqeq1d 2179 | . . . . . 6 |
33 | 32 | rexbidv 2471 | . . . . 5 |
34 | eqeq1 2177 | . . . . 5 | |
35 | 33, 34 | orbi12d 788 | . . . 4 |
36 | 35 | cbvralv 2696 | . . 3 |
37 | nfcv 2312 | . . . . . . . . 9 | |
38 | nfre1 2513 | . . . . . . . . . 10 | |
39 | nfv 1521 | . . . . . . . . . 10 | |
40 | 38, 39 | nfor 1567 | . . . . . . . . 9 |
41 | 37, 40 | nfralya 2510 | . . . . . . . 8 |
42 | nfv 1521 | . . . . . . . 8 | |
43 | 41, 42 | nfan 1558 | . . . . . . 7 |
44 | nfv 1521 | . . . . . . 7 | |
45 | simpr 109 | . . . . . . . . . . 11 | |
46 | simprr 527 | . . . . . . . . . . . . . 14 | |
47 | 46 | ad2antrr 485 | . . . . . . . . . . . . 13 |
48 | 47 | adantr 274 | . . . . . . . . . . . 12 |
49 | simprl 526 | . . . . . . . . . . . . . 14 | |
50 | 49 | ad2antrr 485 | . . . . . . . . . . . . 13 |
51 | 50 | adantr 274 | . . . . . . . . . . . 12 |
52 | 48, 51 | sublt0d 8489 | . . . . . . . . . . 11 |
53 | 45, 52 | mpbid 146 | . . . . . . . . . 10 |
54 | 53 | 3mix3d 1169 | . . . . . . . . 9 |
55 | simpr 109 | . . . . . . . . . . 11 | |
56 | 50 | adantr 274 | . . . . . . . . . . . 12 |
57 | 47 | adantr 274 | . . . . . . . . . . . 12 |
58 | 56, 57 | posdifd 8451 | . . . . . . . . . . 11 |
59 | 55, 58 | mpbird 166 | . . . . . . . . . 10 |
60 | 59 | 3mix1d 1167 | . . . . . . . . 9 |
61 | 47 | recnd 7948 | . . . . . . . . . . . 12 |
62 | 50 | recnd 7948 | . . . . . . . . . . . 12 |
63 | 61, 62 | subcld 8230 | . . . . . . . . . . 11 |
64 | simplr 525 | . . . . . . . . . . . 12 | |
65 | 64 | recnd 7948 | . . . . . . . . . . 11 |
66 | simpr 109 | . . . . . . . . . . . 12 | |
67 | 1ap0 8509 | . . . . . . . . . . . 12 # | |
68 | 66, 67 | eqbrtrdi 4028 | . . . . . . . . . . 11 # |
69 | 63, 65, 68 | mulap0bad 8577 | . . . . . . . . . 10 # |
70 | 46, 49 | resubcld 8300 | . . . . . . . . . . . 12 |
71 | 70 | ad2antrr 485 | . . . . . . . . . . 11 |
72 | reaplt 8507 | . . . . . . . . . . 11 # | |
73 | 71, 21, 72 | sylancl 411 | . . . . . . . . . 10 # |
74 | 69, 73 | mpbid 146 | . . . . . . . . 9 |
75 | 54, 60, 74 | mpjaodan 793 | . . . . . . . 8 |
76 | 75 | exp31 362 | . . . . . . 7 |
77 | 43, 44, 76 | rexlimd 2584 | . . . . . 6 |
78 | 77 | imp 123 | . . . . 5 |
79 | 46 | recnd 7948 | . . . . . . . . 9 |
80 | 79 | adantr 274 | . . . . . . . 8 |
81 | 49 | recnd 7948 | . . . . . . . . 9 |
82 | 81 | adantr 274 | . . . . . . . 8 |
83 | simpr 109 | . . . . . . . 8 | |
84 | 80, 82, 83 | subeq0d 8238 | . . . . . . 7 |
85 | 84 | equcomd 1700 | . . . . . 6 |
86 | 85 | 3mix2d 1168 | . . . . 5 |
87 | oveq1 5860 | . . . . . . . . 9 | |
88 | 87 | eqeq1d 2179 | . . . . . . . 8 |
89 | 88 | rexbidv 2471 | . . . . . . 7 |
90 | eqeq1 2177 | . . . . . . 7 | |
91 | 89, 90 | orbi12d 788 | . . . . . 6 |
92 | simpl 108 | . . . . . 6 | |
93 | 91, 92, 70 | rspcdva 2839 | . . . . 5 |
94 | 78, 86, 93 | mpjaodan 793 | . . . 4 |
95 | 94 | ralrimivva 2552 | . . 3 |
96 | 36, 95 | sylbi 120 | . 2 |
97 | 30, 96 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3o 972 wceq 1348 wcel 2141 wral 2448 wrex 2449 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 cmul 7779 clt 7954 cmin 8090 # cap 8500 cdiv 8589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 |
This theorem is referenced by: trirec0xor 14077 |
Copyright terms: Public domain | W3C validator |