Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > trirec0 | Unicode version |
Description: Every real number having
a reciprocal or equaling zero is equivalent to
real number trichotomy.
This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 13922). (Contributed by Jim Kingdon, 10-Jun-2024.) |
Ref | Expression |
---|---|
trirec0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . . . 6 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 1, 2 | lt0ap0d 8547 | . . . . . 6 # |
4 | rerecclap 8626 | . . . . . . 7 # | |
5 | recn 7886 | . . . . . . . 8 | |
6 | recidap 8582 | . . . . . . . 8 # | |
7 | 5, 6 | sylan 281 | . . . . . . 7 # |
8 | oveq2 5850 | . . . . . . . . 9 | |
9 | 8 | eqeq1d 2174 | . . . . . . . 8 |
10 | 9 | rspcev 2830 | . . . . . . 7 |
11 | 4, 7, 10 | syl2anc 409 | . . . . . 6 # |
12 | 1, 3, 11 | syl2anc 409 | . . . . 5 |
13 | 12 | orcd 723 | . . . 4 |
14 | simpr 109 | . . . . 5 | |
15 | 14 | olcd 724 | . . . 4 |
16 | simpll 519 | . . . . . 6 | |
17 | simpr 109 | . . . . . . 7 | |
18 | 16, 17 | gt0ap0d 8527 | . . . . . 6 # |
19 | 16, 18, 11 | syl2anc 409 | . . . . 5 |
20 | 19 | orcd 723 | . . . 4 |
21 | 0re 7899 | . . . . . 6 | |
22 | breq2 3986 | . . . . . . . 8 | |
23 | eqeq2 2175 | . . . . . . . 8 | |
24 | breq1 3985 | . . . . . . . 8 | |
25 | 22, 23, 24 | 3orbi123d 1301 | . . . . . . 7 |
26 | 25 | rspcv 2826 | . . . . . 6 |
27 | 21, 26 | ax-mp 5 | . . . . 5 |
28 | 27 | adantl 275 | . . . 4 |
29 | 13, 15, 20, 28 | mpjao3dan 1297 | . . 3 |
30 | 29 | ralimiaa 2528 | . 2 |
31 | oveq1 5849 | . . . . . . 7 | |
32 | 31 | eqeq1d 2174 | . . . . . 6 |
33 | 32 | rexbidv 2467 | . . . . 5 |
34 | eqeq1 2172 | . . . . 5 | |
35 | 33, 34 | orbi12d 783 | . . . 4 |
36 | 35 | cbvralv 2692 | . . 3 |
37 | nfcv 2308 | . . . . . . . . 9 | |
38 | nfre1 2509 | . . . . . . . . . 10 | |
39 | nfv 1516 | . . . . . . . . . 10 | |
40 | 38, 39 | nfor 1562 | . . . . . . . . 9 |
41 | 37, 40 | nfralya 2506 | . . . . . . . 8 |
42 | nfv 1516 | . . . . . . . 8 | |
43 | 41, 42 | nfan 1553 | . . . . . . 7 |
44 | nfv 1516 | . . . . . . 7 | |
45 | simpr 109 | . . . . . . . . . . 11 | |
46 | simprr 522 | . . . . . . . . . . . . . 14 | |
47 | 46 | ad2antrr 480 | . . . . . . . . . . . . 13 |
48 | 47 | adantr 274 | . . . . . . . . . . . 12 |
49 | simprl 521 | . . . . . . . . . . . . . 14 | |
50 | 49 | ad2antrr 480 | . . . . . . . . . . . . 13 |
51 | 50 | adantr 274 | . . . . . . . . . . . 12 |
52 | 48, 51 | sublt0d 8468 | . . . . . . . . . . 11 |
53 | 45, 52 | mpbid 146 | . . . . . . . . . 10 |
54 | 53 | 3mix3d 1164 | . . . . . . . . 9 |
55 | simpr 109 | . . . . . . . . . . 11 | |
56 | 50 | adantr 274 | . . . . . . . . . . . 12 |
57 | 47 | adantr 274 | . . . . . . . . . . . 12 |
58 | 56, 57 | posdifd 8430 | . . . . . . . . . . 11 |
59 | 55, 58 | mpbird 166 | . . . . . . . . . 10 |
60 | 59 | 3mix1d 1162 | . . . . . . . . 9 |
61 | 47 | recnd 7927 | . . . . . . . . . . . 12 |
62 | 50 | recnd 7927 | . . . . . . . . . . . 12 |
63 | 61, 62 | subcld 8209 | . . . . . . . . . . 11 |
64 | simplr 520 | . . . . . . . . . . . 12 | |
65 | 64 | recnd 7927 | . . . . . . . . . . 11 |
66 | simpr 109 | . . . . . . . . . . . 12 | |
67 | 1ap0 8488 | . . . . . . . . . . . 12 # | |
68 | 66, 67 | eqbrtrdi 4021 | . . . . . . . . . . 11 # |
69 | 63, 65, 68 | mulap0bad 8556 | . . . . . . . . . 10 # |
70 | 46, 49 | resubcld 8279 | . . . . . . . . . . . 12 |
71 | 70 | ad2antrr 480 | . . . . . . . . . . 11 |
72 | reaplt 8486 | . . . . . . . . . . 11 # | |
73 | 71, 21, 72 | sylancl 410 | . . . . . . . . . 10 # |
74 | 69, 73 | mpbid 146 | . . . . . . . . 9 |
75 | 54, 60, 74 | mpjaodan 788 | . . . . . . . 8 |
76 | 75 | exp31 362 | . . . . . . 7 |
77 | 43, 44, 76 | rexlimd 2580 | . . . . . 6 |
78 | 77 | imp 123 | . . . . 5 |
79 | 46 | recnd 7927 | . . . . . . . . 9 |
80 | 79 | adantr 274 | . . . . . . . 8 |
81 | 49 | recnd 7927 | . . . . . . . . 9 |
82 | 81 | adantr 274 | . . . . . . . 8 |
83 | simpr 109 | . . . . . . . 8 | |
84 | 80, 82, 83 | subeq0d 8217 | . . . . . . 7 |
85 | 84 | equcomd 1695 | . . . . . 6 |
86 | 85 | 3mix2d 1163 | . . . . 5 |
87 | oveq1 5849 | . . . . . . . . 9 | |
88 | 87 | eqeq1d 2174 | . . . . . . . 8 |
89 | 88 | rexbidv 2467 | . . . . . . 7 |
90 | eqeq1 2172 | . . . . . . 7 | |
91 | 89, 90 | orbi12d 783 | . . . . . 6 |
92 | simpl 108 | . . . . . 6 | |
93 | 91, 92, 70 | rspcdva 2835 | . . . . 5 |
94 | 78, 86, 93 | mpjaodan 788 | . . . 4 |
95 | 94 | ralrimivva 2548 | . . 3 |
96 | 36, 95 | sylbi 120 | . 2 |
97 | 30, 96 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3o 967 wceq 1343 wcel 2136 wral 2444 wrex 2445 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 cmul 7758 clt 7933 cmin 8069 # cap 8479 cdiv 8568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 |
This theorem is referenced by: trirec0xor 13924 |
Copyright terms: Public domain | W3C validator |