Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0 Unicode version

Theorem trirec0 14448
Description: Every real number having a reciprocal or equaling zero is equivalent to real number trichotomy.

This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 14447). (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
Distinct variable group:    x, y, z

Proof of Theorem trirec0
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . 6  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  x  <  0 )  ->  x  e.  RR )
2 simpr 110 . . . . . . 7  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  x  <  0 )  ->  x  <  0 )
31, 2lt0ap0d 8596 . . . . . 6  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  x  <  0 )  ->  x #  0 )
4 rerecclap 8676 . . . . . . 7  |-  ( ( x  e.  RR  /\  x #  0 )  ->  (
1  /  x )  e.  RR )
5 recn 7935 . . . . . . . 8  |-  ( x  e.  RR  ->  x  e.  CC )
6 recidap 8632 . . . . . . . 8  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
x  x.  ( 1  /  x ) )  =  1 )
75, 6sylan 283 . . . . . . 7  |-  ( ( x  e.  RR  /\  x #  0 )  ->  (
x  x.  ( 1  /  x ) )  =  1 )
8 oveq2 5877 . . . . . . . . 9  |-  ( z  =  ( 1  /  x )  ->  (
x  x.  z )  =  ( x  x.  ( 1  /  x
) ) )
98eqeq1d 2186 . . . . . . . 8  |-  ( z  =  ( 1  /  x )  ->  (
( x  x.  z
)  =  1  <->  (
x  x.  ( 1  /  x ) )  =  1 ) )
109rspcev 2841 . . . . . . 7  |-  ( ( ( 1  /  x
)  e.  RR  /\  ( x  x.  (
1  /  x ) )  =  1 )  ->  E. z  e.  RR  ( x  x.  z
)  =  1 )
114, 7, 10syl2anc 411 . . . . . 6  |-  ( ( x  e.  RR  /\  x #  0 )  ->  E. z  e.  RR  ( x  x.  z )  =  1 )
121, 3, 11syl2anc 411 . . . . 5  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  x  <  0 )  ->  E. z  e.  RR  ( x  x.  z )  =  1 )
1312orcd 733 . . . 4  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  x  <  0 )  ->  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 ) )
14 simpr 110 . . . . 5  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  x  =  0 )  ->  x  =  0 )
1514olcd 734 . . . 4  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  x  =  0 )  ->  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 ) )
16 simpll 527 . . . . . 6  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  0  < 
x )  ->  x  e.  RR )
17 simpr 110 . . . . . . 7  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  0  < 
x )  ->  0  <  x )
1816, 17gt0ap0d 8576 . . . . . 6  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  0  < 
x )  ->  x #  0 )
1916, 18, 11syl2anc 411 . . . . 5  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  0  < 
x )  ->  E. z  e.  RR  ( x  x.  z )  =  1 )
2019orcd 733 . . . 4  |-  ( ( ( x  e.  RR  /\ 
A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x ) )  /\  0  < 
x )  ->  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 ) )
21 0re 7948 . . . . . 6  |-  0  e.  RR
22 breq2 4004 . . . . . . . 8  |-  ( y  =  0  ->  (
x  <  y  <->  x  <  0 ) )
23 eqeq2 2187 . . . . . . . 8  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
24 breq1 4003 . . . . . . . 8  |-  ( y  =  0  ->  (
y  <  x  <->  0  <  x ) )
2522, 23, 243orbi123d 1311 . . . . . . 7  |-  ( y  =  0  ->  (
( x  <  y  \/  x  =  y  \/  y  <  x )  <-> 
( x  <  0  \/  x  =  0  \/  0  <  x ) ) )
2625rspcv 2837 . . . . . 6  |-  ( 0  e.  RR  ->  ( A. y  e.  RR  ( x  <  y  \/  x  =  y  \/  y  <  x )  ->  ( x  <  0  \/  x  =  0  \/  0  < 
x ) ) )
2721, 26ax-mp 5 . . . . 5  |-  ( A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  -> 
( x  <  0  \/  x  =  0  \/  0  <  x ) )
2827adantl 277 . . . 4  |-  ( ( x  e.  RR  /\  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )  ->  ( x  <  0  \/  x  =  0  \/  0  < 
x ) )
2913, 15, 20, 28mpjao3dan 1307 . . 3  |-  ( ( x  e.  RR  /\  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )  ->  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
3029ralimiaa 2539 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
31 oveq1 5876 . . . . . . 7  |-  ( x  =  w  ->  (
x  x.  z )  =  ( w  x.  z ) )
3231eqeq1d 2186 . . . . . 6  |-  ( x  =  w  ->  (
( x  x.  z
)  =  1  <->  (
w  x.  z )  =  1 ) )
3332rexbidv 2478 . . . . 5  |-  ( x  =  w  ->  ( E. z  e.  RR  ( x  x.  z
)  =  1  <->  E. z  e.  RR  (
w  x.  z )  =  1 ) )
34 eqeq1 2184 . . . . 5  |-  ( x  =  w  ->  (
x  =  0  <->  w  =  0 ) )
3533, 34orbi12d 793 . . . 4  |-  ( x  =  w  ->  (
( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  <->  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 ) ) )
3635cbvralv 2703 . . 3  |-  ( A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <->  A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 ) )
37 nfcv 2319 . . . . . . . . 9  |-  F/_ z RR
38 nfre1 2520 . . . . . . . . . 10  |-  F/ z E. z  e.  RR  ( w  x.  z
)  =  1
39 nfv 1528 . . . . . . . . . 10  |-  F/ z  w  =  0
4038, 39nfor 1574 . . . . . . . . 9  |-  F/ z ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )
4137, 40nfralya 2517 . . . . . . . 8  |-  F/ z A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )
42 nfv 1528 . . . . . . . 8  |-  F/ z ( x  e.  RR  /\  y  e.  RR )
4341, 42nfan 1565 . . . . . . 7  |-  F/ z ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )
44 nfv 1528 . . . . . . 7  |-  F/ z ( x  <  y  \/  x  =  y  \/  y  <  x )
45 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  ( y  -  x )  <  0
)  ->  ( y  -  x )  <  0
)
46 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
4746ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  y  e.  RR )
4847adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  ( y  -  x )  <  0
)  ->  y  e.  RR )
49 simprl 529 . . . . . . . . . . . . . 14  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
5049ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  x  e.  RR )
5150adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  ( y  -  x )  <  0
)  ->  x  e.  RR )
5248, 51sublt0d 8517 . . . . . . . . . . 11  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  ( y  -  x )  <  0
)  ->  ( (
y  -  x )  <  0  <->  y  <  x ) )
5345, 52mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  ( y  -  x )  <  0
)  ->  y  <  x )
54533mix3d 1174 . . . . . . . . 9  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  ( y  -  x )  <  0
)  ->  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
55 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  0  <  (
y  -  x ) )  ->  0  <  ( y  -  x ) )
5650adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  0  <  (
y  -  x ) )  ->  x  e.  RR )
5747adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  0  <  (
y  -  x ) )  ->  y  e.  RR )
5856, 57posdifd 8479 . . . . . . . . . . 11  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  0  <  (
y  -  x ) )  ->  ( x  <  y  <->  0  <  (
y  -  x ) ) )
5955, 58mpbird 167 . . . . . . . . . 10  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  0  <  (
y  -  x ) )  ->  x  <  y )
60593mix1d 1172 . . . . . . . . 9  |-  ( ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  /\  0  <  (
y  -  x ) )  ->  ( x  <  y  \/  x  =  y  \/  y  < 
x ) )
6147recnd 7976 . . . . . . . . . . . 12  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  y  e.  CC )
6250recnd 7976 . . . . . . . . . . . 12  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  x  e.  CC )
6361, 62subcld 8258 . . . . . . . . . . 11  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( y  -  x )  e.  CC )
64 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  z  e.  RR )
6564recnd 7976 . . . . . . . . . . 11  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  z  e.  CC )
66 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( ( y  -  x )  x.  z )  =  1 )
67 1ap0 8537 . . . . . . . . . . . 12  |-  1 #  0
6866, 67eqbrtrdi 4039 . . . . . . . . . . 11  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( ( y  -  x )  x.  z ) #  0 )
6963, 65, 68mulap0bad 8605 . . . . . . . . . 10  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( y  -  x ) #  0 )
7046, 49resubcld 8328 . . . . . . . . . . . 12  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( y  -  x
)  e.  RR )
7170ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( y  -  x )  e.  RR )
72 reaplt 8535 . . . . . . . . . . 11  |-  ( ( ( y  -  x
)  e.  RR  /\  0  e.  RR )  ->  ( ( y  -  x ) #  0  <->  ( (
y  -  x )  <  0  \/  0  <  ( y  -  x ) ) ) )
7371, 21, 72sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( ( y  -  x ) #  0  <-> 
( ( y  -  x )  <  0  \/  0  <  ( y  -  x ) ) ) )
7469, 73mpbid 147 . . . . . . . . 9  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( ( y  -  x )  <  0  \/  0  < 
( y  -  x
) ) )
7554, 60, 74mpjaodan 798 . . . . . . . 8  |-  ( ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  z  e.  RR )  /\  ( ( y  -  x )  x.  z
)  =  1 )  ->  ( x  < 
y  \/  x  =  y  \/  y  < 
x ) )
7675exp31 364 . . . . . . 7  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( z  e.  RR  ->  ( ( ( y  -  x )  x.  z )  =  1  ->  ( x  < 
y  \/  x  =  y  \/  y  < 
x ) ) ) )
7743, 44, 76rexlimd 2591 . . . . . 6  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( E. z  e.  RR  ( ( y  -  x )  x.  z )  =  1  ->  ( x  < 
y  \/  x  =  y  \/  y  < 
x ) ) )
7877imp 124 . . . . 5  |-  ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  E. z  e.  RR  (
( y  -  x
)  x.  z )  =  1 )  -> 
( x  <  y  \/  x  =  y  \/  y  <  x ) )
7946recnd 7976 . . . . . . . . 9  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  CC )
8079adantr 276 . . . . . . . 8  |-  ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( y  -  x
)  =  0 )  ->  y  e.  CC )
8149recnd 7976 . . . . . . . . 9  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
8281adantr 276 . . . . . . . 8  |-  ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( y  -  x
)  =  0 )  ->  x  e.  CC )
83 simpr 110 . . . . . . . 8  |-  ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( y  -  x
)  =  0 )  ->  ( y  -  x )  =  0 )
8480, 82, 83subeq0d 8266 . . . . . . 7  |-  ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( y  -  x
)  =  0 )  ->  y  =  x )
8584equcomd 1707 . . . . . 6  |-  ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( y  -  x
)  =  0 )  ->  x  =  y )
86853mix2d 1173 . . . . 5  |-  ( ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( y  -  x
)  =  0 )  ->  ( x  < 
y  \/  x  =  y  \/  y  < 
x ) )
87 oveq1 5876 . . . . . . . . 9  |-  ( w  =  ( y  -  x )  ->  (
w  x.  z )  =  ( ( y  -  x )  x.  z ) )
8887eqeq1d 2186 . . . . . . . 8  |-  ( w  =  ( y  -  x )  ->  (
( w  x.  z
)  =  1  <->  (
( y  -  x
)  x.  z )  =  1 ) )
8988rexbidv 2478 . . . . . . 7  |-  ( w  =  ( y  -  x )  ->  ( E. z  e.  RR  ( w  x.  z
)  =  1  <->  E. z  e.  RR  (
( y  -  x
)  x.  z )  =  1 ) )
90 eqeq1 2184 . . . . . . 7  |-  ( w  =  ( y  -  x )  ->  (
w  =  0  <->  (
y  -  x )  =  0 ) )
9189, 90orbi12d 793 . . . . . 6  |-  ( w  =  ( y  -  x )  ->  (
( E. z  e.  RR  ( w  x.  z )  =  1  \/  w  =  0 )  <->  ( E. z  e.  RR  ( ( y  -  x )  x.  z )  =  1  \/  ( y  -  x )  =  0 ) ) )
92 simpl 109 . . . . . 6  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 ) )
9391, 92, 70rspcdva 2846 . . . . 5  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( E. z  e.  RR  ( ( y  -  x )  x.  z )  =  1  \/  ( y  -  x )  =  0 ) )
9478, 86, 93mpjaodan 798 . . . 4  |-  ( ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  <  y  \/  x  =  y  \/  y  <  x ) )
9594ralrimivva 2559 . . 3  |-  ( A. w  e.  RR  ( E. z  e.  RR  ( w  x.  z
)  =  1  \/  w  =  0 )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
9636, 95sylbi 121 . 2  |-  ( A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
9730, 96impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    x. cmul 7807    < clt 7982    - cmin 8118   # cap 8528    / cdiv 8618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619
This theorem is referenced by:  trirec0xor  14449
  Copyright terms: Public domain W3C validator