| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > trirec0 | Unicode version | ||
| Description: Every real number having
a reciprocal or equaling zero is equivalent to
       real number trichotomy.
 This is the key part of the definition of what is known as a discrete field, so "the real numbers are a discrete field" can be taken as an equivalent way to state real trichotomy (see further discussion at trilpo 15687). (Contributed by Jim Kingdon, 10-Jun-2024.)  | 
| Ref | Expression | 
|---|---|
| trirec0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpll 527 | 
. . . . . 6
 | |
| 2 | simpr 110 | 
. . . . . . 7
 | |
| 3 | 1, 2 | lt0ap0d 8676 | 
. . . . . 6
 | 
| 4 | rerecclap 8757 | 
. . . . . . 7
 | |
| 5 | recn 8012 | 
. . . . . . . 8
 | |
| 6 | recidap 8713 | 
. . . . . . . 8
 | |
| 7 | 5, 6 | sylan 283 | 
. . . . . . 7
 | 
| 8 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 9 | 8 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 10 | 9 | rspcev 2868 | 
. . . . . . 7
 | 
| 11 | 4, 7, 10 | syl2anc 411 | 
. . . . . 6
 | 
| 12 | 1, 3, 11 | syl2anc 411 | 
. . . . 5
 | 
| 13 | 12 | orcd 734 | 
. . . 4
 | 
| 14 | simpr 110 | 
. . . . 5
 | |
| 15 | 14 | olcd 735 | 
. . . 4
 | 
| 16 | simpll 527 | 
. . . . . 6
 | |
| 17 | simpr 110 | 
. . . . . . 7
 | |
| 18 | 16, 17 | gt0ap0d 8656 | 
. . . . . 6
 | 
| 19 | 16, 18, 11 | syl2anc 411 | 
. . . . 5
 | 
| 20 | 19 | orcd 734 | 
. . . 4
 | 
| 21 | 0re 8026 | 
. . . . . 6
 | |
| 22 | breq2 4037 | 
. . . . . . . 8
 | |
| 23 | eqeq2 2206 | 
. . . . . . . 8
 | |
| 24 | breq1 4036 | 
. . . . . . . 8
 | |
| 25 | 22, 23, 24 | 3orbi123d 1322 | 
. . . . . . 7
 | 
| 26 | 25 | rspcv 2864 | 
. . . . . 6
 | 
| 27 | 21, 26 | ax-mp 5 | 
. . . . 5
 | 
| 28 | 27 | adantl 277 | 
. . . 4
 | 
| 29 | 13, 15, 20, 28 | mpjao3dan 1318 | 
. . 3
 | 
| 30 | 29 | ralimiaa 2559 | 
. 2
 | 
| 31 | oveq1 5929 | 
. . . . . . 7
 | |
| 32 | 31 | eqeq1d 2205 | 
. . . . . 6
 | 
| 33 | 32 | rexbidv 2498 | 
. . . . 5
 | 
| 34 | eqeq1 2203 | 
. . . . 5
 | |
| 35 | 33, 34 | orbi12d 794 | 
. . . 4
 | 
| 36 | 35 | cbvralv 2729 | 
. . 3
 | 
| 37 | nfcv 2339 | 
. . . . . . . . 9
 | |
| 38 | nfre1 2540 | 
. . . . . . . . . 10
 | |
| 39 | nfv 1542 | 
. . . . . . . . . 10
 | |
| 40 | 38, 39 | nfor 1588 | 
. . . . . . . . 9
 | 
| 41 | 37, 40 | nfralya 2537 | 
. . . . . . . 8
 | 
| 42 | nfv 1542 | 
. . . . . . . 8
 | |
| 43 | 41, 42 | nfan 1579 | 
. . . . . . 7
 | 
| 44 | nfv 1542 | 
. . . . . . 7
 | |
| 45 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 46 | simprr 531 | 
. . . . . . . . . . . . . 14
 | |
| 47 | 46 | ad2antrr 488 | 
. . . . . . . . . . . . 13
 | 
| 48 | 47 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 49 | simprl 529 | 
. . . . . . . . . . . . . 14
 | |
| 50 | 49 | ad2antrr 488 | 
. . . . . . . . . . . . 13
 | 
| 51 | 50 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 52 | 48, 51 | sublt0d 8597 | 
. . . . . . . . . . 11
 | 
| 53 | 45, 52 | mpbid 147 | 
. . . . . . . . . 10
 | 
| 54 | 53 | 3mix3d 1176 | 
. . . . . . . . 9
 | 
| 55 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 56 | 50 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 57 | 47 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 58 | 56, 57 | posdifd 8559 | 
. . . . . . . . . . 11
 | 
| 59 | 55, 58 | mpbird 167 | 
. . . . . . . . . 10
 | 
| 60 | 59 | 3mix1d 1174 | 
. . . . . . . . 9
 | 
| 61 | 47 | recnd 8055 | 
. . . . . . . . . . . 12
 | 
| 62 | 50 | recnd 8055 | 
. . . . . . . . . . . 12
 | 
| 63 | 61, 62 | subcld 8337 | 
. . . . . . . . . . 11
 | 
| 64 | simplr 528 | 
. . . . . . . . . . . 12
 | |
| 65 | 64 | recnd 8055 | 
. . . . . . . . . . 11
 | 
| 66 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 67 | 1ap0 8617 | 
. . . . . . . . . . . 12
 | |
| 68 | 66, 67 | eqbrtrdi 4072 | 
. . . . . . . . . . 11
 | 
| 69 | 63, 65, 68 | mulap0bad 8686 | 
. . . . . . . . . 10
 | 
| 70 | 46, 49 | resubcld 8407 | 
. . . . . . . . . . . 12
 | 
| 71 | 70 | ad2antrr 488 | 
. . . . . . . . . . 11
 | 
| 72 | reaplt 8615 | 
. . . . . . . . . . 11
 | |
| 73 | 71, 21, 72 | sylancl 413 | 
. . . . . . . . . 10
 | 
| 74 | 69, 73 | mpbid 147 | 
. . . . . . . . 9
 | 
| 75 | 54, 60, 74 | mpjaodan 799 | 
. . . . . . . 8
 | 
| 76 | 75 | exp31 364 | 
. . . . . . 7
 | 
| 77 | 43, 44, 76 | rexlimd 2611 | 
. . . . . 6
 | 
| 78 | 77 | imp 124 | 
. . . . 5
 | 
| 79 | 46 | recnd 8055 | 
. . . . . . . . 9
 | 
| 80 | 79 | adantr 276 | 
. . . . . . . 8
 | 
| 81 | 49 | recnd 8055 | 
. . . . . . . . 9
 | 
| 82 | 81 | adantr 276 | 
. . . . . . . 8
 | 
| 83 | simpr 110 | 
. . . . . . . 8
 | |
| 84 | 80, 82, 83 | subeq0d 8345 | 
. . . . . . 7
 | 
| 85 | 84 | equcomd 1721 | 
. . . . . 6
 | 
| 86 | 85 | 3mix2d 1175 | 
. . . . 5
 | 
| 87 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 88 | 87 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 89 | 88 | rexbidv 2498 | 
. . . . . . 7
 | 
| 90 | eqeq1 2203 | 
. . . . . . 7
 | |
| 91 | 89, 90 | orbi12d 794 | 
. . . . . 6
 | 
| 92 | simpl 109 | 
. . . . . 6
 | |
| 93 | 91, 92, 70 | rspcdva 2873 | 
. . . . 5
 | 
| 94 | 78, 86, 93 | mpjaodan 799 | 
. . . 4
 | 
| 95 | 94 | ralrimivva 2579 | 
. . 3
 | 
| 96 | 36, 95 | sylbi 121 | 
. 2
 | 
| 97 | 30, 96 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 | 
| This theorem is referenced by: trirec0xor 15689 | 
| Copyright terms: Public domain | W3C validator |