ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztri3or Unicode version

Theorem fztri3or 10131
Description: Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fztri3or  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )

Proof of Theorem fztri3or
StepHypRef Expression
1 3mix1 1168 . . 3  |-  ( K  <  M  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
21adantl 277 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  M )  ->  ( K  < 
M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
3 3mix3 1170 . . . 4  |-  ( N  <  K  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
43adantl 277 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  N  <  K )  -> 
( K  <  M  \/  K  e.  ( M ... N )  \/  N  <  K ) )
5 simpr 110 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  -.  K  <  M )
6 simpl2 1003 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  M  e.  ZZ )
76zred 9465 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  M  e.  RR )
8 simpl1 1002 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  K  e.  ZZ )
98zred 9465 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  K  e.  RR )
107, 9lenltd 8161 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( M  <_  K  <->  -.  K  <  M ) )
115, 10mpbird 167 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  M  <_  K )
1211adantr 276 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  M  <_  K
)
13 simpr 110 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  -.  N  <  K )
149adantr 276 . . . . . . 7  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  K  e.  RR )
15 simpll3 1040 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  N  e.  ZZ )
1615zred 9465 . . . . . . 7  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  N  e.  RR )
1714, 16lenltd 8161 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  ( K  <_  N 
<->  -.  N  <  K
) )
1813, 17mpbird 167 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  K  <_  N
)
19 elfz 10106 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
2019adantr 276 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( K  e.  ( M ... N
)  <->  ( M  <_  K  /\  K  <_  N
) ) )
2120adantr 276 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  ( K  e.  ( M ... N
)  <->  ( M  <_  K  /\  K  <_  N
) ) )
2212, 18, 21mpbir2and 946 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  K  e.  ( M ... N ) )
23223mix2d 1175 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  ( K  < 
M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
24 zdclt 9420 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  -> DECID  N  <  K )
2524ancoms 268 . . . . . 6  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  K )
26253adant2 1018 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  K )
2726adantr 276 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  -> DECID  N  <  K )
28 df-dc 836 . . . 4  |-  (DECID  N  < 
K  <->  ( N  < 
K  \/  -.  N  <  K ) )
2927, 28sylib 122 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( N  <  K  \/  -.  N  <  K ) )
304, 23, 29mpjaodan 799 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
31 zdclt 9420 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  -> DECID  K  <  M )
32313adant3 1019 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  <  M )
33 df-dc 836 . . 3  |-  (DECID  K  < 
M  <->  ( K  < 
M  \/  -.  K  <  M ) )
3432, 33sylib 122 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  -.  K  <  M ) )
352, 30, 34mpjaodan 799 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895    < clt 8078    <_ cle 8079   ZZcz 9343   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-fz 10101
This theorem is referenced by:  fzdcel  10132  hashfiv01gt1  10891
  Copyright terms: Public domain W3C validator