ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztri3or Unicode version

Theorem fztri3or 9850
Description: Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
fztri3or  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )

Proof of Theorem fztri3or
StepHypRef Expression
1 3mix1 1151 . . 3  |-  ( K  <  M  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
21adantl 275 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  <  M )  ->  ( K  < 
M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
3 3mix3 1153 . . . 4  |-  ( N  <  K  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
43adantl 275 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  N  <  K )  -> 
( K  <  M  \/  K  e.  ( M ... N )  \/  N  <  K ) )
5 simpr 109 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  -.  K  <  M )
6 simpl2 986 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  M  e.  ZZ )
76zred 9197 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  M  e.  RR )
8 simpl1 985 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  K  e.  ZZ )
98zred 9197 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  K  e.  RR )
107, 9lenltd 7904 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( M  <_  K  <->  -.  K  <  M ) )
115, 10mpbird 166 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  M  <_  K )
1211adantr 274 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  M  <_  K
)
13 simpr 109 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  -.  N  <  K )
149adantr 274 . . . . . . 7  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  K  e.  RR )
15 simpll3 1023 . . . . . . . 8  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  N  e.  ZZ )
1615zred 9197 . . . . . . 7  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  N  e.  RR )
1714, 16lenltd 7904 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  ( K  <_  N 
<->  -.  N  <  K
) )
1813, 17mpbird 166 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  K  <_  N
)
19 elfz 9827 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
2019adantr 274 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( K  e.  ( M ... N
)  <->  ( M  <_  K  /\  K  <_  N
) ) )
2120adantr 274 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  ( K  e.  ( M ... N
)  <->  ( M  <_  K  /\  K  <_  N
) ) )
2212, 18, 21mpbir2and 929 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  K  e.  ( M ... N ) )
23223mix2d 1158 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M )  /\  -.  N  <  K )  ->  ( K  < 
M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
24 zdclt 9152 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  -> DECID  N  <  K )
2524ancoms 266 . . . . . 6  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  K )
26253adant2 1001 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  <  K )
2726adantr 274 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  -> DECID  N  <  K )
28 df-dc 821 . . . 4  |-  (DECID  N  < 
K  <->  ( N  < 
K  \/  -.  N  <  K ) )
2927, 28sylib 121 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( N  <  K  \/  -.  N  <  K ) )
304, 23, 29mpjaodan 788 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  K  <  M
)  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
31 zdclt 9152 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  -> DECID  K  <  M )
32313adant3 1002 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  <  M )
33 df-dc 821 . . 3  |-  (DECID  K  < 
M  <->  ( K  < 
M  \/  -.  K  <  M ) )
3432, 33sylib 121 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  -.  K  <  M ) )
352, 30, 34mpjaodan 788 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M ... N
)  \/  N  < 
K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    \/ w3o 962    /\ w3a 963    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643    < clt 7824    <_ cle 7825   ZZcz 9078   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-fz 9822
This theorem is referenced by:  fzdcel  9851  hashfiv01gt1  10560
  Copyright terms: Public domain W3C validator