ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3or6 Unicode version

Theorem 3or6 1318
Description: Analog of or4 766 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.)
Assertion
Ref Expression
3or6  |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  th )  \/  ( ta  \/  et ) )  <-> 
( ( ph  \/  ch  \/  ta )  \/  ( ps  \/  th  \/  et ) ) )

Proof of Theorem 3or6
StepHypRef Expression
1 or4 766 . . 3  |-  ( ( ( ( ph  \/  ch )  \/  ta )  \/  ( ( ps  \/  th )  \/  et ) )  <->  ( (
( ph  \/  ch )  \/  ( ps  \/  th ) )  \/  ( ta  \/  et ) ) )
2 or4 766 . . . 4  |-  ( ( ( ph  \/  ch )  \/  ( ps  \/  th ) )  <->  ( ( ph  \/  ps )  \/  ( ch  \/  th ) ) )
32orbi1i 758 . . 3  |-  ( ( ( ( ph  \/  ch )  \/  ( ps  \/  th ) )  \/  ( ta  \/  et ) )  <->  ( (
( ph  \/  ps )  \/  ( ch  \/  th ) )  \/  ( ta  \/  et ) ) )
41, 3bitr2i 184 . 2  |-  ( ( ( ( ph  \/  ps )  \/  ( ch  \/  th ) )  \/  ( ta  \/  et ) )  <->  ( (
( ph  \/  ch )  \/  ta )  \/  ( ( ps  \/  th )  \/  et ) ) )
5 df-3or 974 . 2  |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  th )  \/  ( ta  \/  et ) )  <-> 
( ( ( ph  \/  ps )  \/  ( ch  \/  th ) )  \/  ( ta  \/  et ) ) )
6 df-3or 974 . . 3  |-  ( (
ph  \/  ch  \/  ta )  <->  ( ( ph  \/  ch )  \/  ta ) )
7 df-3or 974 . . 3  |-  ( ( ps  \/  th  \/  et )  <->  ( ( ps  \/  th )  \/  et ) )
86, 7orbi12i 759 . 2  |-  ( ( ( ph  \/  ch  \/  ta )  \/  ( ps  \/  th  \/  et ) )  <->  ( (
( ph  \/  ch )  \/  ta )  \/  ( ( ps  \/  th )  \/  et ) ) )
94, 5, 83bitr4i 211 1  |-  ( ( ( ph  \/  ps )  \/  ( ch  \/  th )  \/  ( ta  \/  et ) )  <-> 
( ( ph  \/  ch  \/  ta )  \/  ( ps  \/  th  \/  et ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 703    \/ w3o 972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116  df-3or 974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator