| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 |
|
| bitr2i.2 |
|
| Ref | Expression |
|---|---|
| bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 |
. . 3
| |
| 2 | bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | 3 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 693 pm4.15 695 3or6 1334 sbal1yz 2020 2exsb 2028 moanim 2119 2eu4 2138 cvjust 2191 abbi 2310 sbc8g 2997 ss2rab 3260 unass 3321 unss 3338 undi 3412 difindiss 3418 notm0 3472 disj 3500 unopab 4113 eqvinop 4277 pwexb 4510 dmun 4874 reldm0 4885 dmres 4968 imadmrn 5020 ssrnres 5113 dmsnm 5136 coundi 5172 coundir 5173 cnvpom 5213 xpcom 5217 fun11 5326 fununi 5327 funcnvuni 5328 isarep1 5345 fsn 5737 fconstfvm 5783 eufnfv 5796 acexmidlem2 5922 eloprabga 6013 funoprabg 6025 ralrnmpo 6041 rexrnmpo 6042 oprabrexex2 6196 dfer2 6602 euen1b 6871 xpsnen 6889 rexuz3 11172 imasaddfnlemg 13016 subsubrng2 13847 subsubrg2 13878 tgval2 14371 ssntr 14442 metrest 14826 plyun0 15056 sinhalfpilem 15111 2lgslem4 15428 |
| Copyright terms: Public domain | W3C validator |