| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 |
|
| bitr2i.2 |
|
| Ref | Expression |
|---|---|
| bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 |
. . 3
| |
| 2 | bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | 3 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 696 pm4.15 699 3or6 1357 sbal1yz 2052 2exsb 2060 moanim 2152 2eu4 2171 cvjust 2224 abbi 2343 sbc8g 3036 ss2rab 3300 unass 3361 unss 3378 undi 3452 difindiss 3458 notm0 3512 disj 3540 unopab 4162 eqvinop 4328 pwexb 4564 dmun 4929 reldm0 4940 dmres 5025 imadmrn 5077 ssrnres 5170 dmsnm 5193 coundi 5229 coundir 5230 cnvpom 5270 xpcom 5274 fun11 5387 fununi 5388 funcnvuni 5389 isarep1 5406 fsn 5806 fconstfvm 5856 eufnfv 5869 acexmidlem2 5997 eloprabga 6090 funoprabg 6102 ralrnmpo 6118 rexrnmpo 6119 oprabrexex2 6273 dfer2 6679 euen1b 6953 xpsnen 6976 rexuz3 11496 imasaddfnlemg 13342 subsubrng2 14173 subsubrg2 14204 tgval2 14719 ssntr 14790 metrest 15174 plyun0 15404 sinhalfpilem 15459 2lgslem4 15776 |
| Copyright terms: Public domain | W3C validator |