![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr2i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr2i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr2i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitri 184 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomi 132 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 692 pm4.15 694 3or6 1323 sbal1yz 2001 2exsb 2009 moanim 2100 2eu4 2119 cvjust 2172 abbi 2291 sbc8g 2970 ss2rab 3231 unass 3292 unss 3309 undi 3383 difindiss 3389 notm0 3443 disj 3471 unopab 4082 eqvinop 4243 pwexb 4474 dmun 4834 reldm0 4845 dmres 4928 imadmrn 4980 ssrnres 5071 dmsnm 5094 coundi 5130 coundir 5131 cnvpom 5171 xpcom 5175 fun11 5283 fununi 5284 funcnvuni 5285 isarep1 5302 fsn 5688 fconstfvm 5734 eufnfv 5747 acexmidlem2 5871 eloprabga 5961 funoprabg 5973 ralrnmpo 5988 rexrnmpo 5989 oprabrexex2 6130 dfer2 6535 euen1b 6802 xpsnen 6820 rexuz3 10998 imasaddfnlemg 12734 subsubrg2 13365 tgval2 13521 ssntr 13592 metrest 13976 sinhalfpilem 14182 |
Copyright terms: Public domain | W3C validator |