![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr2i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr2i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr2i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitri 183 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomi 131 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrri 206 3bitr2ri 208 3bitr4ri 212 nan 664 pm4.15 830 3or6 1266 sbal1yz 1932 2exsb 1940 moanim 2029 2eu4 2048 cvjust 2090 abbi 2208 sbc8g 2861 ss2rab 3112 unass 3172 unss 3189 undi 3263 difindiss 3269 notm0 3322 disj 3350 unopab 3939 eqvinop 4094 pwexb 4324 dmun 4674 reldm0 4685 dmres 4766 imadmrn 4817 ssrnres 4907 dmsnm 4930 coundi 4966 coundir 4967 cnvpom 5007 xpcom 5011 fun11 5115 fununi 5116 funcnvuni 5117 isarep1 5134 fsn 5508 fconstfvm 5554 eufnfv 5564 acexmidlem2 5687 eloprabga 5773 funoprabg 5782 ralrnmpt2 5797 rexrnmpt2 5798 oprabrexex2 5939 dfer2 6333 euen1b 6600 xpsnen 6617 rexuz3 10538 tgval2 11903 ssntr 11974 metrest 12292 |
Copyright terms: Public domain | W3C validator |