| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 |
|
| bitr2i.2 |
|
| Ref | Expression |
|---|---|
| bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 |
. . 3
| |
| 2 | bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | 3 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 694 pm4.15 696 3or6 1336 sbal1yz 2030 2exsb 2038 moanim 2129 2eu4 2148 cvjust 2201 abbi 2320 sbc8g 3010 ss2rab 3273 unass 3334 unss 3351 undi 3425 difindiss 3431 notm0 3485 disj 3513 unopab 4131 eqvinop 4295 pwexb 4529 dmun 4894 reldm0 4905 dmres 4989 imadmrn 5041 ssrnres 5134 dmsnm 5157 coundi 5193 coundir 5194 cnvpom 5234 xpcom 5238 fun11 5350 fununi 5351 funcnvuni 5352 isarep1 5369 fsn 5765 fconstfvm 5815 eufnfv 5828 acexmidlem2 5954 eloprabga 6045 funoprabg 6057 ralrnmpo 6073 rexrnmpo 6074 oprabrexex2 6228 dfer2 6634 euen1b 6908 xpsnen 6931 rexuz3 11376 imasaddfnlemg 13221 subsubrng2 14052 subsubrg2 14083 tgval2 14598 ssntr 14669 metrest 15053 plyun0 15283 sinhalfpilem 15338 2lgslem4 15655 |
| Copyright terms: Public domain | W3C validator |