![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr2i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr2i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr2i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitri 184 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomi 132 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 692 pm4.15 694 3or6 1323 sbal1yz 2001 2exsb 2009 moanim 2100 2eu4 2119 cvjust 2172 abbi 2291 sbc8g 2971 ss2rab 3232 unass 3293 unss 3310 undi 3384 difindiss 3390 notm0 3444 disj 3472 unopab 4083 eqvinop 4244 pwexb 4475 dmun 4835 reldm0 4846 dmres 4929 imadmrn 4981 ssrnres 5072 dmsnm 5095 coundi 5131 coundir 5132 cnvpom 5172 xpcom 5176 fun11 5284 fununi 5285 funcnvuni 5286 isarep1 5303 fsn 5689 fconstfvm 5735 eufnfv 5748 acexmidlem2 5872 eloprabga 5962 funoprabg 5974 ralrnmpo 5989 rexrnmpo 5990 oprabrexex2 6131 dfer2 6536 euen1b 6803 xpsnen 6821 rexuz3 10999 imasaddfnlemg 12735 subsubrg2 13367 tgval2 13554 ssntr 13625 metrest 14009 sinhalfpilem 14215 |
Copyright terms: Public domain | W3C validator |