| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 |
|
| bitr2i.2 |
|
| Ref | Expression |
|---|---|
| bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 |
. . 3
| |
| 2 | bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | 3 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 693 pm4.15 695 3or6 1335 sbal1yz 2028 2exsb 2036 moanim 2127 2eu4 2146 cvjust 2199 abbi 2318 sbc8g 3005 ss2rab 3268 unass 3329 unss 3346 undi 3420 difindiss 3426 notm0 3480 disj 3508 unopab 4122 eqvinop 4286 pwexb 4520 dmun 4884 reldm0 4895 dmres 4979 imadmrn 5031 ssrnres 5124 dmsnm 5147 coundi 5183 coundir 5184 cnvpom 5224 xpcom 5228 fun11 5340 fununi 5341 funcnvuni 5342 isarep1 5359 fsn 5751 fconstfvm 5801 eufnfv 5814 acexmidlem2 5940 eloprabga 6031 funoprabg 6043 ralrnmpo 6059 rexrnmpo 6060 oprabrexex2 6214 dfer2 6620 euen1b 6894 xpsnen 6915 rexuz3 11243 imasaddfnlemg 13088 subsubrng2 13919 subsubrg2 13950 tgval2 14465 ssntr 14536 metrest 14920 plyun0 15150 sinhalfpilem 15205 2lgslem4 15522 |
| Copyright terms: Public domain | W3C validator |