| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| bitr2i.1 | 
 | 
| bitr2i.2 | 
 | 
| Ref | Expression | 
|---|---|
| bitr2i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bitr2i.1 | 
. . 3
 | |
| 2 | bitr2i.2 | 
. . 3
 | |
| 3 | 1, 2 | bitri 184 | 
. 2
 | 
| 4 | 3 | bicomi 132 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 693 pm4.15 695 3or6 1334 sbal1yz 2020 2exsb 2028 moanim 2119 2eu4 2138 cvjust 2191 abbi 2310 sbc8g 2997 ss2rab 3259 unass 3320 unss 3337 undi 3411 difindiss 3417 notm0 3471 disj 3499 unopab 4112 eqvinop 4276 pwexb 4509 dmun 4873 reldm0 4884 dmres 4967 imadmrn 5019 ssrnres 5112 dmsnm 5135 coundi 5171 coundir 5172 cnvpom 5212 xpcom 5216 fun11 5325 fununi 5326 funcnvuni 5327 isarep1 5344 fsn 5734 fconstfvm 5780 eufnfv 5793 acexmidlem2 5919 eloprabga 6009 funoprabg 6021 ralrnmpo 6037 rexrnmpo 6038 oprabrexex2 6187 dfer2 6593 euen1b 6862 xpsnen 6880 rexuz3 11155 imasaddfnlemg 12957 subsubrng2 13771 subsubrg2 13802 tgval2 14287 ssntr 14358 metrest 14742 plyun0 14972 sinhalfpilem 15027 2lgslem4 15344 | 
| Copyright terms: Public domain | W3C validator |