| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 |
|
| bitr2i.2 |
|
| Ref | Expression |
|---|---|
| bitr2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 |
. . 3
| |
| 2 | bitr2i.2 |
. . 3
| |
| 3 | 1, 2 | bitri 184 |
. 2
|
| 4 | 3 | bicomi 132 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 693 pm4.15 695 3or6 1335 sbal1yz 2028 2exsb 2036 moanim 2127 2eu4 2146 cvjust 2199 abbi 2318 sbc8g 3005 ss2rab 3268 unass 3329 unss 3346 undi 3420 difindiss 3426 notm0 3480 disj 3508 unopab 4122 eqvinop 4286 pwexb 4519 dmun 4883 reldm0 4894 dmres 4977 imadmrn 5029 ssrnres 5122 dmsnm 5145 coundi 5181 coundir 5182 cnvpom 5222 xpcom 5226 fun11 5335 fununi 5336 funcnvuni 5337 isarep1 5354 fsn 5746 fconstfvm 5792 eufnfv 5805 acexmidlem2 5931 eloprabga 6022 funoprabg 6034 ralrnmpo 6050 rexrnmpo 6051 oprabrexex2 6205 dfer2 6611 euen1b 6880 xpsnen 6898 rexuz3 11220 imasaddfnlemg 13064 subsubrng2 13895 subsubrg2 13926 tgval2 14441 ssntr 14512 metrest 14896 plyun0 15126 sinhalfpilem 15181 2lgslem4 15498 |
| Copyright terms: Public domain | W3C validator |