| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an1 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an1.1 |
|
| mp3an1.2 |
|
| Ref | Expression |
|---|---|
| mp3an1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an1.1 |
. 2
| |
| 2 | mp3an1.2 |
. . 3
| |
| 3 | 2 | 3expb 1207 |
. 2
|
| 4 | 1, 3 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3an12 1340 mp3an1i 1343 mp3anl1 1344 mp3an 1350 mp3an2i 1355 mp3an3an 1356 tfrlem9 6428 rdgexgg 6487 oaexg 6557 omexg 6560 oeiexg 6562 oav2 6572 nnaordex 6637 mulidnq 7537 1idpru 7739 addgt0sr 7923 muladd11 8240 cnegex 8285 negsubdi 8363 renegcl 8368 mulneg1 8502 ltaddpos 8560 addge01 8580 rimul 8693 recclap 8787 recidap 8794 recidap2 8795 recdivap2 8833 divdiv23apzi 8873 ltmul12a 8968 lemul12a 8970 mulgt1 8971 ltmulgt11 8972 gt0div 8978 ge0div 8979 ltdiv23i 9034 8th4div3 9291 gtndiv 9503 nn0ind 9522 fnn0ind 9524 xrre2 9978 ioorebasg 10132 fzen 10200 elfz0ubfz0 10282 expubnd 10778 le2sq2 10797 bernneq 10842 expnbnd 10845 faclbnd6 10926 bccl 10949 hashfacen 11018 wrdred1hash 11074 ccatlid 11100 swrd0g 11151 shftfval 11247 mulreap 11290 caucvgrelemrec 11405 binom1p 11911 efi4p 12143 sinadd 12162 cosadd 12163 cos2t 12176 cos2tsin 12177 absefib 12197 efieq1re 12198 demoivreALT 12200 odd2np1 12299 opoe 12321 omoe 12322 opeo 12323 omeo 12324 gcdadd 12421 gcdmultiple 12456 algcvgblem 12486 algcvga 12488 isprm3 12555 coprm 12581 1arith2 12806 rmodislmod 14228 cnfldneg 14450 cnfldmulg 14453 cnfldexp 14454 zringmulg 14475 zringsubgval 14482 bl2ioo 15137 ioo2blex 15139 mpomulcn 15153 sinperlem 15395 logge0 15467 lgsdir2 15625 1lgs 15635 |
| Copyright terms: Public domain | W3C validator |