![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an1 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an1.1 |
![]() ![]() |
mp3an1.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp3an1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an1.1 |
. 2
![]() ![]() | |
2 | mp3an1.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | 3expb 1206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpan 424 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: mp3an12 1338 mp3an1i 1341 mp3anl1 1342 mp3an 1348 mp3an2i 1353 mp3an3an 1354 tfrlem9 6372 rdgexgg 6431 oaexg 6501 omexg 6504 oeiexg 6506 oav2 6516 nnaordex 6581 mulidnq 7449 1idpru 7651 addgt0sr 7835 muladd11 8152 cnegex 8197 negsubdi 8275 renegcl 8280 mulneg1 8414 ltaddpos 8471 addge01 8491 rimul 8604 recclap 8698 recidap 8705 recidap2 8706 recdivap2 8744 divdiv23apzi 8784 ltmul12a 8879 lemul12a 8881 mulgt1 8882 ltmulgt11 8883 gt0div 8889 ge0div 8890 ltdiv23i 8945 8th4div3 9201 gtndiv 9412 nn0ind 9431 fnn0ind 9433 xrre2 9887 ioorebasg 10041 fzen 10109 elfz0ubfz0 10191 expubnd 10667 le2sq2 10686 bernneq 10731 expnbnd 10734 faclbnd6 10815 bccl 10838 hashfacen 10907 wrdred1hash 10957 shftfval 10965 mulreap 11008 caucvgrelemrec 11123 binom1p 11628 efi4p 11860 sinadd 11879 cosadd 11880 cos2t 11893 cos2tsin 11894 absefib 11914 efieq1re 11915 demoivreALT 11917 odd2np1 12014 opoe 12036 omoe 12037 opeo 12038 omeo 12039 gcdadd 12122 gcdmultiple 12157 algcvgblem 12187 algcvga 12189 isprm3 12256 coprm 12282 1arith2 12506 rmodislmod 13847 cnfldneg 14061 cnfldmulg 14064 cnfldexp 14065 zringmulg 14086 zringsubgval 14093 bl2ioo 14710 ioo2blex 14712 sinperlem 14943 logge0 15015 lgsdir2 15149 1lgs 15159 |
Copyright terms: Public domain | W3C validator |