| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an1 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an1.1 |
|
| mp3an1.2 |
|
| Ref | Expression |
|---|---|
| mp3an1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an1.1 |
. 2
| |
| 2 | mp3an1.2 |
. . 3
| |
| 3 | 2 | 3expb 1206 |
. 2
|
| 4 | 1, 3 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3an12 1338 mp3an1i 1341 mp3anl1 1342 mp3an 1348 mp3an2i 1353 mp3an3an 1354 tfrlem9 6386 rdgexgg 6445 oaexg 6515 omexg 6518 oeiexg 6520 oav2 6530 nnaordex 6595 mulidnq 7475 1idpru 7677 addgt0sr 7861 muladd11 8178 cnegex 8223 negsubdi 8301 renegcl 8306 mulneg1 8440 ltaddpos 8498 addge01 8518 rimul 8631 recclap 8725 recidap 8732 recidap2 8733 recdivap2 8771 divdiv23apzi 8811 ltmul12a 8906 lemul12a 8908 mulgt1 8909 ltmulgt11 8910 gt0div 8916 ge0div 8917 ltdiv23i 8972 8th4div3 9229 gtndiv 9440 nn0ind 9459 fnn0ind 9461 xrre2 9915 ioorebasg 10069 fzen 10137 elfz0ubfz0 10219 expubnd 10707 le2sq2 10726 bernneq 10771 expnbnd 10774 faclbnd6 10855 bccl 10878 hashfacen 10947 wrdred1hash 10997 shftfval 11005 mulreap 11048 caucvgrelemrec 11163 binom1p 11669 efi4p 11901 sinadd 11920 cosadd 11921 cos2t 11934 cos2tsin 11935 absefib 11955 efieq1re 11956 demoivreALT 11958 odd2np1 12057 opoe 12079 omoe 12080 opeo 12081 omeo 12082 gcdadd 12179 gcdmultiple 12214 algcvgblem 12244 algcvga 12246 isprm3 12313 coprm 12339 1arith2 12564 rmodislmod 13985 cnfldneg 14207 cnfldmulg 14210 cnfldexp 14211 zringmulg 14232 zringsubgval 14239 bl2ioo 14894 ioo2blex 14896 mpomulcn 14910 sinperlem 15152 logge0 15224 lgsdir2 15382 1lgs 15392 |
| Copyright terms: Public domain | W3C validator |