| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 773 ordir 819 andir 821 3anrot 986 3orrot 987 3ancoma 988 3orcomb 990 3ioran 996 3anbi123i 1191 3orbi123i 1192 3or6 1336 xorcom 1408 nfbii 1497 19.26-3an 1507 alnex 1523 19.42h 1711 19.42 1712 equsal 1751 equsalv 1817 sb6 1911 eeeanv 1962 sbbi 1988 sbco3xzyz 2002 sbcom2v 2014 sbel2x 2027 sb8eu 2068 sb8mo 2069 sb8euh 2078 eu1 2080 cbvmo 2095 mo3h 2109 sbmo 2115 eqcom 2209 abeq1 2317 cbvabw 2330 cbvab 2331 clelab 2333 nfceqi 2346 sbabel 2377 ralbii2 2518 rexbii2 2519 r2alf 2525 r2exf 2526 nfraldya 2543 nfrexdya 2544 r3al 2552 r19.41 2663 r19.42v 2665 ralcomf 2669 rexcomf 2670 reean 2677 3reeanv 2679 rabid2 2685 rabbi 2686 cbvrmow 2691 reubiia 2694 rmobiia 2699 reu5 2726 rmo5 2729 cbvralfw 2731 cbvrexfw 2732 cbvralf 2733 cbvrexf 2734 cbvreuw 2737 cbvreu 2740 cbvrmo 2741 cbvralvw 2746 cbvrexvw 2747 vjust 2777 ceqsex3v 2820 ceqsex4v 2821 ceqsex8v 2823 eueq 2951 reu2 2968 reu6 2969 reu3 2970 rmo4 2973 rmo3f 2977 2rmorex 2986 cbvsbcw 3033 cbvsbc 3034 sbccomlem 3080 rmo3 3098 csbcow 3112 csbabg 3163 cbvralcsf 3164 cbvrexcsf 3165 cbvreucsf 3166 eqss 3216 uniiunlem 3290 ssequn1 3351 unss 3355 rexun 3361 ralunb 3362 elin3 3372 incom 3373 inass 3391 ssin 3403 ssddif 3415 unssdif 3416 difin 3418 invdif 3423 indif 3424 indi 3428 symdifxor 3447 disj3 3521 eldifpr 3670 rexsns 3682 reusn 3714 prss 3800 tpss 3812 eluni2 3868 elunirab 3877 uniun 3883 uni0b 3889 unissb 3894 elintrab 3911 ssintrab 3922 intun 3930 intpr 3931 iuncom 3947 iuncom4 3948 iunab 3988 ssiinf 3991 iinab 4003 iunin2 4005 iunun 4020 iunxun 4021 iunxiun 4023 sspwuni 4026 iinpw 4032 cbvdisj 4045 brun 4111 brin 4112 brdif 4113 dftr2 4160 inuni 4215 repizf2lem 4221 unidif0 4227 ssext 4283 pweqb 4285 otth2 4303 opelopabsbALT 4323 eqopab2b 4344 pwin 4347 unisuc 4478 elpwpwel 4540 sucexb 4563 elomssom 4671 xpiundi 4751 xpiundir 4752 poinxp 4762 soinxp 4763 seinxp 4764 inopab 4828 difopab 4829 raliunxp 4837 rexiunxp 4838 iunxpf 4844 cnvco 4881 dmiun 4906 dmuni 4907 dm0rn0 4914 brres 4984 dmres 4999 restidsing 5034 cnvsym 5085 asymref 5087 codir 5090 qfto 5091 cnvopab 5103 cnvdif 5108 rniun 5112 dminss 5116 imainss 5117 cnvcnvsn 5178 resco 5206 imaco 5207 rnco 5208 coiun 5211 coass 5220 ressn 5242 cnviinm 5243 xpcom 5248 funcnv 5354 funcnv3 5355 fncnv 5359 fun11 5360 fnres 5412 dfmpt3 5418 fnopabg 5419 fintm 5483 fin 5484 fores 5530 dff1o3 5550 fun11iun 5565 f11o 5577 f1ompt 5754 fsn 5775 imaiun 5852 isores2 5905 eqoprab2b 6026 opabex3d 6229 opabex3 6230 dfopab2 6298 dfoprab3s 6299 fmpox 6309 tpostpos 6373 dfsmo2 6396 qsid 6710 mapval2 6788 mapsncnv 6805 elixp2 6812 ixpin 6833 xpassen 6950 diffitest 7010 pw1dc0el 7034 supmoti 7121 eqinfti 7148 distrnqg 7535 ltbtwnnq 7564 distrnq0 7607 nqprrnd 7691 ltresr 7987 elznn0nn 9421 xrnemnf 9934 xrnepnf 9935 elioomnf 10125 elxrge0 10135 elfzuzb 10176 fzass4 10219 elfz2nn0 10269 elfzo2 10307 elfzo3 10321 lbfzo0 10342 fzind2 10405 infssuzex 10413 dfrp2 10443 rexfiuz 11415 fisumcom2 11864 prodmodc 12004 fprodcom2fi 12052 4sqlem12 12840 infpn2 12942 xpsfrnel 13291 xpscf 13294 islmod 14168 isbasis2g 14632 tgval2 14638 ntreq0 14719 txuni2 14843 isms2 15041 plyun0 15323 bdceq 15977 |
| Copyright terms: Public domain | W3C validator |