| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 773 ordir 819 andir 821 3anrot 986 3orrot 987 3ancoma 988 3orcomb 990 3ioran 996 3anbi123i 1191 3orbi123i 1192 3or6 1336 xorcom 1408 nfbii 1496 19.26-3an 1506 alnex 1522 19.42h 1710 19.42 1711 equsal 1750 equsalv 1816 sb6 1910 eeeanv 1961 sbbi 1987 sbco3xzyz 2001 sbcom2v 2013 sbel2x 2026 sb8eu 2067 sb8mo 2068 sb8euh 2077 eu1 2079 cbvmo 2094 mo3h 2107 sbmo 2113 eqcom 2207 abeq1 2315 cbvabw 2328 cbvab 2329 clelab 2331 nfceqi 2344 sbabel 2375 ralbii2 2516 rexbii2 2517 r2alf 2523 r2exf 2524 nfraldya 2541 nfrexdya 2542 r3al 2550 r19.41 2661 r19.42v 2663 ralcomf 2667 rexcomf 2668 reean 2675 3reeanv 2677 rabid2 2683 rabbi 2684 reubiia 2691 rmobiia 2696 reu5 2723 rmo5 2726 cbvralfw 2728 cbvrexfw 2729 cbvralf 2730 cbvrexf 2731 cbvreu 2736 cbvrmo 2737 cbvralvw 2742 cbvrexvw 2743 vjust 2773 ceqsex3v 2815 ceqsex4v 2816 ceqsex8v 2818 eueq 2944 reu2 2961 reu6 2962 reu3 2963 rmo4 2966 rmo3f 2970 2rmorex 2979 cbvsbcw 3026 cbvsbc 3027 sbccomlem 3073 rmo3 3090 csbcow 3104 csbabg 3155 cbvralcsf 3156 cbvrexcsf 3157 cbvreucsf 3158 eqss 3208 uniiunlem 3282 ssequn1 3343 unss 3347 rexun 3353 ralunb 3354 elin3 3364 incom 3365 inass 3383 ssin 3395 ssddif 3407 unssdif 3408 difin 3410 invdif 3415 indif 3416 indi 3420 symdifxor 3439 disj3 3513 eldifpr 3660 rexsns 3672 reusn 3704 prss 3789 tpss 3799 eluni2 3854 elunirab 3863 uniun 3869 uni0b 3875 unissb 3880 elintrab 3897 ssintrab 3908 intun 3916 intpr 3917 iuncom 3933 iuncom4 3934 iunab 3974 ssiinf 3977 iinab 3989 iunin2 3991 iunun 4006 iunxun 4007 iunxiun 4009 sspwuni 4012 iinpw 4018 cbvdisj 4031 brun 4095 brin 4096 brdif 4097 dftr2 4144 inuni 4199 repizf2lem 4205 unidif0 4211 ssext 4265 pweqb 4267 otth2 4285 opelopabsbALT 4305 eqopab2b 4326 pwin 4329 unisuc 4460 elpwpwel 4522 sucexb 4545 elomssom 4653 xpiundi 4733 xpiundir 4734 poinxp 4744 soinxp 4745 seinxp 4746 inopab 4810 difopab 4811 raliunxp 4819 rexiunxp 4820 iunxpf 4826 cnvco 4863 dmiun 4887 dmuni 4888 dm0rn0 4895 brres 4965 dmres 4980 restidsing 5015 cnvsym 5066 asymref 5068 codir 5071 qfto 5072 cnvopab 5084 cnvdif 5089 rniun 5093 dminss 5097 imainss 5098 cnvcnvsn 5159 resco 5187 imaco 5188 rnco 5189 coiun 5192 coass 5201 ressn 5223 cnviinm 5224 xpcom 5229 funcnv 5335 funcnv3 5336 fncnv 5340 fun11 5341 fnres 5392 dfmpt3 5398 fnopabg 5399 fintm 5461 fin 5462 fores 5508 dff1o3 5528 fun11iun 5543 f11o 5555 f1ompt 5731 fsn 5752 imaiun 5829 isores2 5882 eqoprab2b 6003 opabex3d 6206 opabex3 6207 dfopab2 6275 dfoprab3s 6276 fmpox 6286 tpostpos 6350 dfsmo2 6373 qsid 6687 mapval2 6765 mapsncnv 6782 elixp2 6789 ixpin 6810 xpassen 6925 diffitest 6984 pw1dc0el 7008 supmoti 7095 eqinfti 7122 distrnqg 7500 ltbtwnnq 7529 distrnq0 7572 nqprrnd 7656 ltresr 7952 elznn0nn 9386 xrnemnf 9899 xrnepnf 9900 elioomnf 10090 elxrge0 10100 elfzuzb 10141 fzass4 10184 elfz2nn0 10234 elfzo2 10272 elfzo3 10286 lbfzo0 10305 fzind2 10368 infssuzex 10376 dfrp2 10406 rexfiuz 11300 fisumcom2 11749 prodmodc 11889 fprodcom2fi 11937 4sqlem12 12725 infpn2 12827 xpsfrnel 13176 xpscf 13179 islmod 14053 isbasis2g 14517 tgval2 14523 ntreq0 14604 txuni2 14728 isms2 14926 plyun0 15208 bdceq 15778 |
| Copyright terms: Public domain | W3C validator |