Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version |
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4i.1 | |
3bitr4i.2 | |
3bitr4i.3 |
Ref | Expression |
---|---|
3bitr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 | . 2 | |
2 | 3bitr4i.1 | . . 3 | |
3 | 3bitr4i.3 | . . 3 | |
4 | 2, 3 | bitr4i 186 | . 2 |
5 | 1, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bibi2d 231 pm4.71 387 pm5.32ri 452 mpan10 471 an31 559 an4 581 or4 766 ordir 812 andir 814 3anrot 978 3orrot 979 3ancoma 980 3orcomb 982 3ioran 988 3anbi123i 1183 3orbi123i 1184 3or6 1318 xorcom 1383 nfbii 1466 19.26-3an 1476 alnex 1492 19.42h 1680 19.42 1681 equsal 1720 equsalv 1786 sb6 1879 eeeanv 1926 sbbi 1952 sbco3xzyz 1966 sbcom2v 1978 sbel2x 1991 sb8eu 2032 sb8mo 2033 sb8euh 2042 eu1 2044 cbvmo 2059 mo3h 2072 sbmo 2078 eqcom 2172 abeq1 2280 cbvabw 2293 cbvab 2294 clelab 2296 nfceqi 2308 sbabel 2339 ralbii2 2480 rexbii2 2481 r2alf 2487 r2exf 2488 nfraldya 2505 nfrexdya 2506 r3al 2514 r19.41 2625 r19.42v 2627 ralcomf 2631 rexcomf 2632 reean 2638 3reeanv 2640 rabid2 2646 rabbi 2647 reubiia 2654 rmobiia 2659 reu5 2682 rmo5 2685 cbvralfw 2687 cbvrexfw 2688 cbvralf 2689 cbvrexf 2690 cbvreu 2694 cbvrmo 2695 cbvralvw 2700 cbvrexvw 2701 vjust 2731 ceqsex3v 2772 ceqsex4v 2773 ceqsex8v 2775 eueq 2901 reu2 2918 reu6 2919 reu3 2920 rmo4 2923 rmo3f 2927 2rmorex 2936 cbvsbcw 2982 cbvsbc 2983 sbccomlem 3029 rmo3 3046 csbcow 3060 csbabg 3110 cbvralcsf 3111 cbvrexcsf 3112 cbvreucsf 3113 eqss 3162 uniiunlem 3236 ssequn1 3297 unss 3301 rexun 3307 ralunb 3308 elin3 3318 incom 3319 inass 3337 ssin 3349 ssddif 3361 unssdif 3362 difin 3364 invdif 3369 indif 3370 indi 3374 symdifxor 3393 disj3 3466 eldifpr 3608 rexsns 3620 reusn 3652 prss 3734 tpss 3743 eluni2 3798 elunirab 3807 uniun 3813 uni0b 3819 unissb 3824 elintrab 3841 ssintrab 3852 intun 3860 intpr 3861 iuncom 3877 iuncom4 3878 iunab 3917 ssiinf 3920 iinab 3932 iunin2 3934 iunun 3949 iunxun 3950 iunxiun 3952 sspwuni 3955 iinpw 3961 cbvdisj 3974 brun 4038 brin 4039 brdif 4040 dftr2 4087 inuni 4139 repizf2lem 4145 unidif0 4151 ssext 4204 pweqb 4206 otth2 4224 opelopabsbALT 4242 eqopab2b 4262 pwin 4265 unisuc 4396 elpwpwel 4458 sucexb 4479 elomssom 4587 xpiundi 4667 xpiundir 4668 poinxp 4678 soinxp 4679 seinxp 4680 inopab 4741 difopab 4742 raliunxp 4750 rexiunxp 4751 iunxpf 4757 cnvco 4794 dmiun 4818 dmuni 4819 dm0rn0 4826 brres 4895 dmres 4910 cnvsym 4992 asymref 4994 codir 4997 qfto 4998 cnvopab 5010 cnvdif 5015 rniun 5019 dminss 5023 imainss 5024 cnvcnvsn 5085 resco 5113 imaco 5114 rnco 5115 coiun 5118 coass 5127 ressn 5149 cnviinm 5150 xpcom 5155 funcnv 5257 funcnv3 5258 fncnv 5262 fun11 5263 fnres 5312 dfmpt3 5318 fnopabg 5319 fintm 5381 fin 5382 fores 5427 dff1o3 5446 fun11iun 5461 f11o 5473 f1ompt 5644 fsn 5665 imaiun 5736 isores2 5789 eqoprab2b 5908 opabex3d 6097 opabex3 6098 dfopab2 6165 dfoprab3s 6166 fmpox 6176 tpostpos 6240 dfsmo2 6263 qsid 6574 mapval2 6652 mapsncnv 6669 elixp2 6676 ixpin 6697 xpassen 6804 diffitest 6861 pw1dc0el 6885 supmoti 6966 eqinfti 6993 distrnqg 7336 ltbtwnnq 7365 distrnq0 7408 nqprrnd 7492 ltresr 7788 elznn0nn 9213 xrnemnf 9721 xrnepnf 9722 elioomnf 9912 elxrge0 9922 elfzuzb 9962 fzass4 10005 elfz2nn0 10055 elfzo2 10093 elfzo3 10106 lbfzo0 10124 fzind2 10182 dfrp2 10207 rexfiuz 10940 fisumcom2 11388 prodmodc 11528 fprodcom2fi 11576 infssuzex 11891 infpn2 12398 isbasis2g 12758 tgval2 12766 ntreq0 12847 txuni2 12971 isms2 13169 bdceq 13799 |
Copyright terms: Public domain | W3C validator |