| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 772 ordir 818 andir 820 3anrot 985 3orrot 986 3ancoma 987 3orcomb 989 3ioran 995 3anbi123i 1190 3orbi123i 1191 3or6 1334 xorcom 1399 nfbii 1487 19.26-3an 1497 alnex 1513 19.42h 1701 19.42 1702 equsal 1741 equsalv 1807 sb6 1901 eeeanv 1952 sbbi 1978 sbco3xzyz 1992 sbcom2v 2004 sbel2x 2017 sb8eu 2058 sb8mo 2059 sb8euh 2068 eu1 2070 cbvmo 2085 mo3h 2098 sbmo 2104 eqcom 2198 abeq1 2306 cbvabw 2319 cbvab 2320 clelab 2322 nfceqi 2335 sbabel 2366 ralbii2 2507 rexbii2 2508 r2alf 2514 r2exf 2515 nfraldya 2532 nfrexdya 2533 r3al 2541 r19.41 2652 r19.42v 2654 ralcomf 2658 rexcomf 2659 reean 2666 3reeanv 2668 rabid2 2674 rabbi 2675 reubiia 2682 rmobiia 2687 reu5 2714 rmo5 2717 cbvralfw 2719 cbvrexfw 2720 cbvralf 2721 cbvrexf 2722 cbvreu 2727 cbvrmo 2728 cbvralvw 2733 cbvrexvw 2734 vjust 2764 ceqsex3v 2806 ceqsex4v 2807 ceqsex8v 2809 eueq 2935 reu2 2952 reu6 2953 reu3 2954 rmo4 2957 rmo3f 2961 2rmorex 2970 cbvsbcw 3017 cbvsbc 3018 sbccomlem 3064 rmo3 3081 csbcow 3095 csbabg 3146 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 eqss 3198 uniiunlem 3272 ssequn1 3333 unss 3337 rexun 3343 ralunb 3344 elin3 3354 incom 3355 inass 3373 ssin 3385 ssddif 3397 unssdif 3398 difin 3400 invdif 3405 indif 3406 indi 3410 symdifxor 3429 disj3 3503 eldifpr 3649 rexsns 3661 reusn 3693 prss 3778 tpss 3788 eluni2 3843 elunirab 3852 uniun 3858 uni0b 3864 unissb 3869 elintrab 3886 ssintrab 3897 intun 3905 intpr 3906 iuncom 3922 iuncom4 3923 iunab 3963 ssiinf 3966 iinab 3978 iunin2 3980 iunun 3995 iunxun 3996 iunxiun 3998 sspwuni 4001 iinpw 4007 cbvdisj 4020 brun 4084 brin 4085 brdif 4086 dftr2 4133 inuni 4188 repizf2lem 4194 unidif0 4200 ssext 4254 pweqb 4256 otth2 4274 opelopabsbALT 4293 eqopab2b 4314 pwin 4317 unisuc 4448 elpwpwel 4510 sucexb 4533 elomssom 4641 xpiundi 4721 xpiundir 4722 poinxp 4732 soinxp 4733 seinxp 4734 inopab 4798 difopab 4799 raliunxp 4807 rexiunxp 4808 iunxpf 4814 cnvco 4851 dmiun 4875 dmuni 4876 dm0rn0 4883 brres 4952 dmres 4967 restidsing 5002 cnvsym 5053 asymref 5055 codir 5058 qfto 5059 cnvopab 5071 cnvdif 5076 rniun 5080 dminss 5084 imainss 5085 cnvcnvsn 5146 resco 5174 imaco 5175 rnco 5176 coiun 5179 coass 5188 ressn 5210 cnviinm 5211 xpcom 5216 funcnv 5319 funcnv3 5320 fncnv 5324 fun11 5325 fnres 5374 dfmpt3 5380 fnopabg 5381 fintm 5443 fin 5444 fores 5490 dff1o3 5510 fun11iun 5525 f11o 5537 f1ompt 5713 fsn 5734 imaiun 5807 isores2 5860 eqoprab2b 5980 opabex3d 6178 opabex3 6179 dfopab2 6247 dfoprab3s 6248 fmpox 6258 tpostpos 6322 dfsmo2 6345 qsid 6659 mapval2 6737 mapsncnv 6754 elixp2 6761 ixpin 6782 xpassen 6889 diffitest 6948 pw1dc0el 6972 supmoti 7059 eqinfti 7086 distrnqg 7454 ltbtwnnq 7483 distrnq0 7526 nqprrnd 7610 ltresr 7906 elznn0nn 9340 xrnemnf 9852 xrnepnf 9853 elioomnf 10043 elxrge0 10053 elfzuzb 10094 fzass4 10137 elfz2nn0 10187 elfzo2 10225 elfzo3 10239 lbfzo0 10257 fzind2 10315 infssuzex 10323 dfrp2 10353 rexfiuz 11154 fisumcom2 11603 prodmodc 11743 fprodcom2fi 11791 4sqlem12 12571 infpn2 12673 xpsfrnel 12987 xpscf 12990 islmod 13847 isbasis2g 14281 tgval2 14287 ntreq0 14368 txuni2 14492 isms2 14690 plyun0 14972 bdceq 15488 |
| Copyright terms: Public domain | W3C validator |