![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version |
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4i.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3bitr4i.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitr4i 187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 772 ordir 818 andir 820 3anrot 985 3orrot 986 3ancoma 987 3orcomb 989 3ioran 995 3anbi123i 1190 3orbi123i 1191 3or6 1334 xorcom 1399 nfbii 1484 19.26-3an 1494 alnex 1510 19.42h 1698 19.42 1699 equsal 1738 equsalv 1804 sb6 1898 eeeanv 1949 sbbi 1975 sbco3xzyz 1989 sbcom2v 2001 sbel2x 2014 sb8eu 2055 sb8mo 2056 sb8euh 2065 eu1 2067 cbvmo 2082 mo3h 2095 sbmo 2101 eqcom 2195 abeq1 2303 cbvabw 2316 cbvab 2317 clelab 2319 nfceqi 2332 sbabel 2363 ralbii2 2504 rexbii2 2505 r2alf 2511 r2exf 2512 nfraldya 2529 nfrexdya 2530 r3al 2538 r19.41 2649 r19.42v 2651 ralcomf 2655 rexcomf 2656 reean 2663 3reeanv 2665 rabid2 2671 rabbi 2672 reubiia 2679 rmobiia 2684 reu5 2711 rmo5 2714 cbvralfw 2716 cbvrexfw 2717 cbvralf 2718 cbvrexf 2719 cbvreu 2724 cbvrmo 2725 cbvralvw 2730 cbvrexvw 2731 vjust 2761 ceqsex3v 2803 ceqsex4v 2804 ceqsex8v 2806 eueq 2932 reu2 2949 reu6 2950 reu3 2951 rmo4 2954 rmo3f 2958 2rmorex 2967 cbvsbcw 3014 cbvsbc 3015 sbccomlem 3061 rmo3 3078 csbcow 3092 csbabg 3143 cbvralcsf 3144 cbvrexcsf 3145 cbvreucsf 3146 eqss 3195 uniiunlem 3269 ssequn1 3330 unss 3334 rexun 3340 ralunb 3341 elin3 3351 incom 3352 inass 3370 ssin 3382 ssddif 3394 unssdif 3395 difin 3397 invdif 3402 indif 3403 indi 3407 symdifxor 3426 disj3 3500 eldifpr 3646 rexsns 3658 reusn 3690 prss 3775 tpss 3785 eluni2 3840 elunirab 3849 uniun 3855 uni0b 3861 unissb 3866 elintrab 3883 ssintrab 3894 intun 3902 intpr 3903 iuncom 3919 iuncom4 3920 iunab 3960 ssiinf 3963 iinab 3975 iunin2 3977 iunun 3992 iunxun 3993 iunxiun 3995 sspwuni 3998 iinpw 4004 cbvdisj 4017 brun 4081 brin 4082 brdif 4083 dftr2 4130 inuni 4185 repizf2lem 4191 unidif0 4197 ssext 4251 pweqb 4253 otth2 4271 opelopabsbALT 4290 eqopab2b 4311 pwin 4314 unisuc 4445 elpwpwel 4507 sucexb 4530 elomssom 4638 xpiundi 4718 xpiundir 4719 poinxp 4729 soinxp 4730 seinxp 4731 inopab 4795 difopab 4796 raliunxp 4804 rexiunxp 4805 iunxpf 4811 cnvco 4848 dmiun 4872 dmuni 4873 dm0rn0 4880 brres 4949 dmres 4964 restidsing 4999 cnvsym 5050 asymref 5052 codir 5055 qfto 5056 cnvopab 5068 cnvdif 5073 rniun 5077 dminss 5081 imainss 5082 cnvcnvsn 5143 resco 5171 imaco 5172 rnco 5173 coiun 5176 coass 5185 ressn 5207 cnviinm 5208 xpcom 5213 funcnv 5316 funcnv3 5317 fncnv 5321 fun11 5322 fnres 5371 dfmpt3 5377 fnopabg 5378 fintm 5440 fin 5441 fores 5487 dff1o3 5507 fun11iun 5522 f11o 5534 f1ompt 5710 fsn 5731 imaiun 5804 isores2 5857 eqoprab2b 5977 opabex3d 6175 opabex3 6176 dfopab2 6244 dfoprab3s 6245 fmpox 6255 tpostpos 6319 dfsmo2 6342 qsid 6656 mapval2 6734 mapsncnv 6751 elixp2 6758 ixpin 6779 xpassen 6886 diffitest 6945 pw1dc0el 6969 supmoti 7054 eqinfti 7081 distrnqg 7449 ltbtwnnq 7478 distrnq0 7521 nqprrnd 7605 ltresr 7901 elznn0nn 9334 xrnemnf 9846 xrnepnf 9847 elioomnf 10037 elxrge0 10047 elfzuzb 10088 fzass4 10131 elfz2nn0 10181 elfzo2 10219 elfzo3 10233 lbfzo0 10251 fzind2 10309 dfrp2 10335 rexfiuz 11136 fisumcom2 11584 prodmodc 11724 fprodcom2fi 11772 infssuzex 12089 4sqlem12 12543 infpn2 12616 xpsfrnel 12930 xpscf 12933 islmod 13790 isbasis2g 14224 tgval2 14230 ntreq0 14311 txuni2 14435 isms2 14633 plyun0 14915 bdceq 15404 |
Copyright terms: Public domain | W3C validator |