| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 776 ordir 822 andir 824 3anrot 1007 3orrot 1008 3ancoma 1009 3orcomb 1011 3ioran 1017 3anbi123i 1212 3orbi123i 1213 3or6 1357 xorcom 1430 nfbii 1519 19.26-3an 1529 alnex 1545 19.42h 1733 19.42 1734 equsal 1773 equsalv 1839 sb6 1933 eeeanv 1984 sbbi 2010 sbco3xzyz 2024 sbcom2v 2036 sbel2x 2049 sb8eu 2090 sb8mo 2091 sb8euh 2100 eu1 2102 cbvmo 2117 mo3h 2131 sbmo 2137 eqcom 2231 abeq1 2339 cbvabw 2352 cbvab 2353 clelab 2355 nfceqi 2368 sbabel 2399 ralbii2 2540 rexbii2 2541 r2alf 2547 r2exf 2548 nfraldya 2565 nfrexdya 2566 r3al 2574 r19.41 2686 r19.42v 2688 ralcomf 2692 rexcomf 2693 reean 2700 3reeanv 2702 rabid2 2708 rabbi 2709 cbvrmow 2714 reubiia 2717 rmobiia 2722 reu5 2749 rmo5 2752 cbvralfw 2754 cbvrexfw 2755 cbvralf 2756 cbvrexf 2757 cbvreuw 2760 cbvreu 2763 cbvrmo 2764 cbvralvw 2769 cbvrexvw 2770 vjust 2800 ceqsex3v 2843 ceqsex4v 2844 ceqsex8v 2846 eueq 2974 reu2 2991 reu6 2992 reu3 2993 rmo4 2996 rmo3f 3000 2rmorex 3009 cbvsbcw 3056 cbvsbc 3057 sbccomlem 3103 rmo3 3121 csbcow 3135 csbabg 3186 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 eqss 3239 uniiunlem 3313 ssequn1 3374 unss 3378 rexun 3384 ralunb 3385 elin3 3395 incom 3396 inass 3414 ssin 3426 ssddif 3438 unssdif 3439 difin 3441 invdif 3446 indif 3447 indi 3451 symdifxor 3470 disj3 3544 eldifpr 3693 rexsns 3705 reusn 3737 prss 3824 tpss 3836 eluni2 3892 elunirab 3901 uniun 3907 uni0b 3913 unissb 3918 elintrab 3935 ssintrab 3946 intun 3954 intpr 3955 iuncom 3971 iuncom4 3972 iunab 4012 ssiinf 4015 iinab 4027 iunin2 4029 iunun 4044 iunxun 4045 iunxiun 4047 sspwuni 4050 iinpw 4056 cbvdisj 4069 brun 4135 brin 4136 brdif 4137 dftr2 4184 inuni 4239 repizf2lem 4245 unidif0 4251 ssext 4307 pweqb 4309 otth2 4327 opelopabsbALT 4347 eqopab2b 4368 pwin 4373 unisuc 4504 elpwpwel 4566 sucexb 4589 elomssom 4697 xpiundi 4777 xpiundir 4778 poinxp 4788 soinxp 4789 seinxp 4790 inopab 4854 difopab 4855 raliunxp 4863 rexiunxp 4864 iunxpf 4870 cnvco 4907 dmiun 4932 dmuni 4933 dm0rn0 4940 brres 5011 dmres 5026 restidsing 5061 cnvsym 5112 asymref 5114 codir 5117 qfto 5118 cnvopab 5130 cnvdif 5135 rniun 5139 dminss 5143 imainss 5144 cnvcnvsn 5205 resco 5233 imaco 5234 rnco 5235 coiun 5238 coass 5247 ressn 5269 cnviinm 5270 xpcom 5275 funcnv 5382 funcnv3 5383 fncnv 5387 fun11 5388 fnres 5440 dfmpt3 5446 fnopabg 5447 fintm 5511 fin 5512 fores 5558 dff1o3 5578 fun11iun 5593 f11o 5605 f1ompt 5786 fsn 5807 imaiun 5884 isores2 5937 eqoprab2b 6062 opabex3d 6266 opabex3 6267 dfopab2 6335 dfoprab3s 6336 fmpox 6346 tpostpos 6410 dfsmo2 6433 qsid 6747 mapval2 6825 mapsncnv 6842 elixp2 6849 ixpin 6870 xpassen 6989 diffitest 7049 pw1dc0el 7073 supmoti 7160 eqinfti 7187 distrnqg 7574 ltbtwnnq 7603 distrnq0 7646 nqprrnd 7730 ltresr 8026 elznn0nn 9460 xrnemnf 9973 xrnepnf 9974 elioomnf 10164 elxrge0 10174 elfzuzb 10215 fzass4 10258 elfz2nn0 10308 elfzo2 10346 elfzo3 10360 lbfzo0 10381 fzind2 10445 infssuzex 10453 dfrp2 10483 rexfiuz 11500 fisumcom2 11949 prodmodc 12089 fprodcom2fi 12137 4sqlem12 12925 infpn2 13027 xpsfrnel 13377 xpscf 13380 islmod 14255 isbasis2g 14719 tgval2 14725 ntreq0 14806 txuni2 14930 isms2 15128 plyun0 15410 bdceq 16205 |
| Copyright terms: Public domain | W3C validator |