| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version | ||
| Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr4i.1 |
|
| 3bitr4i.2 |
|
| 3bitr4i.3 |
|
| Ref | Expression |
|---|---|
| 3bitr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4i.2 |
. 2
| |
| 2 | 3bitr4i.1 |
. . 3
| |
| 3 | 3bitr4i.3 |
. . 3
| |
| 4 | 2, 3 | bitr4i 187 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 772 ordir 818 andir 820 3anrot 985 3orrot 986 3ancoma 987 3orcomb 989 3ioran 995 3anbi123i 1190 3orbi123i 1191 3or6 1334 xorcom 1399 nfbii 1487 19.26-3an 1497 alnex 1513 19.42h 1701 19.42 1702 equsal 1741 equsalv 1807 sb6 1901 eeeanv 1952 sbbi 1978 sbco3xzyz 1992 sbcom2v 2004 sbel2x 2017 sb8eu 2058 sb8mo 2059 sb8euh 2068 eu1 2070 cbvmo 2085 mo3h 2098 sbmo 2104 eqcom 2198 abeq1 2306 cbvabw 2319 cbvab 2320 clelab 2322 nfceqi 2335 sbabel 2366 ralbii2 2507 rexbii2 2508 r2alf 2514 r2exf 2515 nfraldya 2532 nfrexdya 2533 r3al 2541 r19.41 2652 r19.42v 2654 ralcomf 2658 rexcomf 2659 reean 2666 3reeanv 2668 rabid2 2674 rabbi 2675 reubiia 2682 rmobiia 2687 reu5 2714 rmo5 2717 cbvralfw 2719 cbvrexfw 2720 cbvralf 2721 cbvrexf 2722 cbvreu 2727 cbvrmo 2728 cbvralvw 2733 cbvrexvw 2734 vjust 2764 ceqsex3v 2806 ceqsex4v 2807 ceqsex8v 2809 eueq 2935 reu2 2952 reu6 2953 reu3 2954 rmo4 2957 rmo3f 2961 2rmorex 2970 cbvsbcw 3017 cbvsbc 3018 sbccomlem 3064 rmo3 3081 csbcow 3095 csbabg 3146 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 eqss 3199 uniiunlem 3273 ssequn1 3334 unss 3338 rexun 3344 ralunb 3345 elin3 3355 incom 3356 inass 3374 ssin 3386 ssddif 3398 unssdif 3399 difin 3401 invdif 3406 indif 3407 indi 3411 symdifxor 3430 disj3 3504 eldifpr 3650 rexsns 3662 reusn 3694 prss 3779 tpss 3789 eluni2 3844 elunirab 3853 uniun 3859 uni0b 3865 unissb 3870 elintrab 3887 ssintrab 3898 intun 3906 intpr 3907 iuncom 3923 iuncom4 3924 iunab 3964 ssiinf 3967 iinab 3979 iunin2 3981 iunun 3996 iunxun 3997 iunxiun 3999 sspwuni 4002 iinpw 4008 cbvdisj 4021 brun 4085 brin 4086 brdif 4087 dftr2 4134 inuni 4189 repizf2lem 4195 unidif0 4201 ssext 4255 pweqb 4257 otth2 4275 opelopabsbALT 4294 eqopab2b 4315 pwin 4318 unisuc 4449 elpwpwel 4511 sucexb 4534 elomssom 4642 xpiundi 4722 xpiundir 4723 poinxp 4733 soinxp 4734 seinxp 4735 inopab 4799 difopab 4800 raliunxp 4808 rexiunxp 4809 iunxpf 4815 cnvco 4852 dmiun 4876 dmuni 4877 dm0rn0 4884 brres 4953 dmres 4968 restidsing 5003 cnvsym 5054 asymref 5056 codir 5059 qfto 5060 cnvopab 5072 cnvdif 5077 rniun 5081 dminss 5085 imainss 5086 cnvcnvsn 5147 resco 5175 imaco 5176 rnco 5177 coiun 5180 coass 5189 ressn 5211 cnviinm 5212 xpcom 5217 funcnv 5320 funcnv3 5321 fncnv 5325 fun11 5326 fnres 5377 dfmpt3 5383 fnopabg 5384 fintm 5446 fin 5447 fores 5493 dff1o3 5513 fun11iun 5528 f11o 5540 f1ompt 5716 fsn 5737 imaiun 5810 isores2 5863 eqoprab2b 5984 opabex3d 6187 opabex3 6188 dfopab2 6256 dfoprab3s 6257 fmpox 6267 tpostpos 6331 dfsmo2 6354 qsid 6668 mapval2 6746 mapsncnv 6763 elixp2 6770 ixpin 6791 xpassen 6898 diffitest 6957 pw1dc0el 6981 supmoti 7068 eqinfti 7095 distrnqg 7471 ltbtwnnq 7500 distrnq0 7543 nqprrnd 7627 ltresr 7923 elznn0nn 9357 xrnemnf 9869 xrnepnf 9870 elioomnf 10060 elxrge0 10070 elfzuzb 10111 fzass4 10154 elfz2nn0 10204 elfzo2 10242 elfzo3 10256 lbfzo0 10274 fzind2 10332 infssuzex 10340 dfrp2 10370 rexfiuz 11171 fisumcom2 11620 prodmodc 11760 fprodcom2fi 11808 4sqlem12 12596 infpn2 12698 xpsfrnel 13046 xpscf 13049 islmod 13923 isbasis2g 14365 tgval2 14371 ntreq0 14452 txuni2 14576 isms2 14774 plyun0 15056 bdceq 15572 |
| Copyright terms: Public domain | W3C validator |