![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4i | Unicode version |
Description: A chained inference from transitive law for logical equivalence. This inference is frequently used to apply a definition to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3bitr4i.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3bitr4i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3bitr4i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3bitr4i.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitr4i 187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bibi2d 232 pm4.71 389 pm5.32ri 455 mpan10 474 an31 564 an4 586 or4 771 ordir 817 andir 819 3anrot 983 3orrot 984 3ancoma 985 3orcomb 987 3ioran 993 3anbi123i 1188 3orbi123i 1189 3or6 1323 xorcom 1388 nfbii 1473 19.26-3an 1483 alnex 1499 19.42h 1687 19.42 1688 equsal 1727 equsalv 1793 sb6 1886 eeeanv 1933 sbbi 1959 sbco3xzyz 1973 sbcom2v 1985 sbel2x 1998 sb8eu 2039 sb8mo 2040 sb8euh 2049 eu1 2051 cbvmo 2066 mo3h 2079 sbmo 2085 eqcom 2179 abeq1 2287 cbvabw 2300 cbvab 2301 clelab 2303 nfceqi 2315 sbabel 2346 ralbii2 2487 rexbii2 2488 r2alf 2494 r2exf 2495 nfraldya 2512 nfrexdya 2513 r3al 2521 r19.41 2632 r19.42v 2634 ralcomf 2638 rexcomf 2639 reean 2645 3reeanv 2647 rabid2 2653 rabbi 2654 reubiia 2661 rmobiia 2666 reu5 2689 rmo5 2692 cbvralfw 2694 cbvrexfw 2695 cbvralf 2696 cbvrexf 2697 cbvreu 2701 cbvrmo 2702 cbvralvw 2707 cbvrexvw 2708 vjust 2738 ceqsex3v 2779 ceqsex4v 2780 ceqsex8v 2782 eueq 2908 reu2 2925 reu6 2926 reu3 2927 rmo4 2930 rmo3f 2934 2rmorex 2943 cbvsbcw 2990 cbvsbc 2991 sbccomlem 3037 rmo3 3054 csbcow 3068 csbabg 3118 cbvralcsf 3119 cbvrexcsf 3120 cbvreucsf 3121 eqss 3170 uniiunlem 3244 ssequn1 3305 unss 3309 rexun 3315 ralunb 3316 elin3 3326 incom 3327 inass 3345 ssin 3357 ssddif 3369 unssdif 3370 difin 3372 invdif 3377 indif 3378 indi 3382 symdifxor 3401 disj3 3475 eldifpr 3619 rexsns 3631 reusn 3663 prss 3748 tpss 3758 eluni2 3813 elunirab 3822 uniun 3828 uni0b 3834 unissb 3839 elintrab 3856 ssintrab 3867 intun 3875 intpr 3876 iuncom 3892 iuncom4 3893 iunab 3933 ssiinf 3936 iinab 3948 iunin2 3950 iunun 3965 iunxun 3966 iunxiun 3968 sspwuni 3971 iinpw 3977 cbvdisj 3990 brun 4054 brin 4055 brdif 4056 dftr2 4103 inuni 4155 repizf2lem 4161 unidif0 4167 ssext 4221 pweqb 4223 otth2 4241 opelopabsbALT 4259 eqopab2b 4279 pwin 4282 unisuc 4413 elpwpwel 4475 sucexb 4496 elomssom 4604 xpiundi 4684 xpiundir 4685 poinxp 4695 soinxp 4696 seinxp 4697 inopab 4759 difopab 4760 raliunxp 4768 rexiunxp 4769 iunxpf 4775 cnvco 4812 dmiun 4836 dmuni 4837 dm0rn0 4844 brres 4913 dmres 4928 restidsing 4963 cnvsym 5012 asymref 5014 codir 5017 qfto 5018 cnvopab 5030 cnvdif 5035 rniun 5039 dminss 5043 imainss 5044 cnvcnvsn 5105 resco 5133 imaco 5134 rnco 5135 coiun 5138 coass 5147 ressn 5169 cnviinm 5170 xpcom 5175 funcnv 5277 funcnv3 5278 fncnv 5282 fun11 5283 fnres 5332 dfmpt3 5338 fnopabg 5339 fintm 5401 fin 5402 fores 5447 dff1o3 5467 fun11iun 5482 f11o 5494 f1ompt 5667 fsn 5688 imaiun 5760 isores2 5813 eqoprab2b 5932 opabex3d 6121 opabex3 6122 dfopab2 6189 dfoprab3s 6190 fmpox 6200 tpostpos 6264 dfsmo2 6287 qsid 6599 mapval2 6677 mapsncnv 6694 elixp2 6701 ixpin 6722 xpassen 6829 diffitest 6886 pw1dc0el 6910 supmoti 6991 eqinfti 7018 distrnqg 7385 ltbtwnnq 7414 distrnq0 7457 nqprrnd 7541 ltresr 7837 elznn0nn 9266 xrnemnf 9776 xrnepnf 9777 elioomnf 9967 elxrge0 9977 elfzuzb 10018 fzass4 10061 elfz2nn0 10111 elfzo2 10149 elfzo3 10162 lbfzo0 10180 fzind2 10238 dfrp2 10263 rexfiuz 10997 fisumcom2 11445 prodmodc 11585 fprodcom2fi 11633 infssuzex 11949 infpn2 12456 xpsfrnel 12762 xpscf 12765 islmod 13379 isbasis2g 13515 tgval2 13521 ntreq0 13602 txuni2 13726 isms2 13924 bdceq 14564 |
Copyright terms: Public domain | W3C validator |