Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi12i | Unicode version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | |
orbi12i.2 |
Ref | Expression |
---|---|
orbi12i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 | |
2 | 1 | orbi2i 752 | . 2 |
3 | orbi12i.1 | . . 3 | |
4 | 3 | orbi1i 753 | . 2 |
5 | 2, 4 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: andir 809 anddi 811 3orbi123i 1179 3or6 1313 excxor 1368 19.33b2 1617 sbequilem 1826 sborv 1878 sbor 1942 r19.43 2623 rexun 3301 indi 3368 difindiss 3375 symdifxor 3387 unab 3388 dfpr2 3594 rabrsndc 3643 pwprss 3784 pwtpss 3785 unipr 3802 uniun 3807 iunun 3943 iunxun 3944 brun 4032 pwunss 4260 ordsoexmid 4538 onintexmid 4549 dcextest 4557 opthprc 4654 cnvsom 5146 ftpg 5668 tpostpos 6228 eldju 7029 djur 7030 ltexprlemloc 7544 axpre-ltwlin 7820 axpre-apti 7822 axpre-mulext 7825 axpre-suploc 7839 fz01or 10042 cbvsum 11297 fsum3 11324 cbvprod 11495 fprodseq 11520 gcdsupex 11886 gcdsupcl 11887 pythagtriplem2 12194 pythagtrip 12211 |
Copyright terms: Public domain | W3C validator |