![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi12i | Unicode version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
orbi12i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | orbi2i 762 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | orbi12i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | orbi1i 763 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: andir 819 anddi 821 3orbi123i 1189 3or6 1323 excxor 1378 19.33b2 1629 sbequilem 1838 sborv 1890 sbor 1954 r19.43 2635 rexun 3317 indi 3384 difindiss 3391 symdifxor 3403 unab 3404 dfpr2 3613 rabrsndc 3662 pwprss 3807 pwtpss 3808 unipr 3825 uniun 3830 iunun 3967 iunxun 3968 brun 4056 pwunss 4285 ordsoexmid 4563 onintexmid 4574 dcextest 4582 opthprc 4679 cnvsom 5174 ftpg 5702 tpostpos 6267 eldju 7069 djur 7070 ltexprlemloc 7608 axpre-ltwlin 7884 axpre-apti 7886 axpre-mulext 7889 axpre-suploc 7903 fz01or 10113 cbvsum 11370 fsum3 11397 cbvprod 11568 fprodseq 11593 gcdsupex 11960 gcdsupcl 11961 pythagtriplem2 12268 pythagtrip 12285 |
Copyright terms: Public domain | W3C validator |