ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orbi123i Unicode version

Theorem 3orbi123i 1179
Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
Hypotheses
Ref Expression
bi3.1  |-  ( ph  <->  ps )
bi3.2  |-  ( ch  <->  th )
bi3.3  |-  ( ta  <->  et )
Assertion
Ref Expression
3orbi123i  |-  ( (
ph  \/  ch  \/  ta )  <->  ( ps  \/  th  \/  et ) )

Proof of Theorem 3orbi123i
StepHypRef Expression
1 bi3.1 . . . 4  |-  ( ph  <->  ps )
2 bi3.2 . . . 4  |-  ( ch  <->  th )
31, 2orbi12i 754 . . 3  |-  ( (
ph  \/  ch )  <->  ( ps  \/  th )
)
4 bi3.3 . . 3  |-  ( ta  <->  et )
53, 4orbi12i 754 . 2  |-  ( ( ( ph  \/  ch )  \/  ta )  <->  ( ( ps  \/  th )  \/  et )
)
6 df-3or 969 . 2  |-  ( (
ph  \/  ch  \/  ta )  <->  ( ( ph  \/  ch )  \/  ta ) )
7 df-3or 969 . 2  |-  ( ( ps  \/  th  \/  et )  <->  ( ( ps  \/  th )  \/  et ) )
85, 6, 73bitr4i 211 1  |-  ( (
ph  \/  ch  \/  ta )  <->  ( ps  \/  th  \/  et ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    \/ w3o 967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 969
This theorem is referenced by:  nnwetri  6881  exmidontriimlem3  7179
  Copyright terms: Public domain W3C validator