ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwetri Unicode version

Theorem nnwetri 6893
Description: A natural number is well-ordered by  _E. More specifically, this order both satisfies  We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
Assertion
Ref Expression
nnwetri  |-  ( A  e.  om  ->  (  _E  We  A  /\  A. x  e.  A  A. y  e.  A  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) ) )
Distinct variable group:    x, A, y

Proof of Theorem nnwetri
StepHypRef Expression
1 nnord 4596 . . 3  |-  ( A  e.  om  ->  Ord  A )
2 ordwe 4560 . . 3  |-  ( Ord 
A  ->  _E  We  A )
31, 2syl 14 . 2  |-  ( A  e.  om  ->  _E  We  A )
4 simprl 526 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  A )
5 simpl 108 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A  e.  om )
6 elnn 4590 . . . . 5  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
74, 5, 6syl2anc 409 . . . 4  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  om )
8 simprr 527 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  A )
9 elnn 4590 . . . . 5  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
108, 5, 9syl2anc 409 . . . 4  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  om )
11 nntri3or 6472 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
12 epel 4277 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
13 biid 170 . . . . . 6  |-  ( x  =  y  <->  x  =  y )
14 epel 4277 . . . . . 6  |-  ( y  _E  x  <->  y  e.  x )
1512, 13, 143orbi123i 1184 . . . . 5  |-  ( ( x  _E  y  \/  x  =  y  \/  y  _E  x )  <-> 
( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
1611, 15sylibr 133 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  _E  y  \/  x  =  y  \/  y  _E  x
) )
177, 10, 16syl2anc 409 . . 3  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) )
1817ralrimivva 2552 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  \/  x  =  y  \/  y  _E  x ) )
193, 18jca 304 1  |-  ( A  e.  om  ->  (  _E  We  A  /\  A. x  e.  A  A. y  e.  A  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 972    e. wcel 2141   A.wral 2448   class class class wbr 3989    _E cep 4272    We wwe 4315   Ord word 4347   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-eprel 4274  df-frfor 4316  df-frind 4317  df-wetr 4319  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator