ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnwetri Unicode version

Theorem nnwetri 6807
Description: A natural number is well-ordered by  _E. More specifically, this order both satisfies  We and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.)
Assertion
Ref Expression
nnwetri  |-  ( A  e.  om  ->  (  _E  We  A  /\  A. x  e.  A  A. y  e.  A  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) ) )
Distinct variable group:    x, A, y

Proof of Theorem nnwetri
StepHypRef Expression
1 nnord 4528 . . 3  |-  ( A  e.  om  ->  Ord  A )
2 ordwe 4493 . . 3  |-  ( Ord 
A  ->  _E  We  A )
31, 2syl 14 . 2  |-  ( A  e.  om  ->  _E  We  A )
4 simprl 520 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  A )
5 simpl 108 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A  e.  om )
6 elnn 4522 . . . . 5  |-  ( ( x  e.  A  /\  A  e.  om )  ->  x  e.  om )
74, 5, 6syl2anc 408 . . . 4  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  x  e.  om )
8 simprr 521 . . . . 5  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  A )
9 elnn 4522 . . . . 5  |-  ( ( y  e.  A  /\  A  e.  om )  ->  y  e.  om )
108, 5, 9syl2anc 408 . . . 4  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  y  e.  om )
11 nntri3or 6392 . . . . 5  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
12 epel 4217 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
13 biid 170 . . . . . 6  |-  ( x  =  y  <->  x  =  y )
14 epel 4217 . . . . . 6  |-  ( y  _E  x  <->  y  e.  x )
1512, 13, 143orbi123i 1171 . . . . 5  |-  ( ( x  _E  y  \/  x  =  y  \/  y  _E  x )  <-> 
( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
1611, 15sylibr 133 . . . 4  |-  ( ( x  e.  om  /\  y  e.  om )  ->  ( x  _E  y  \/  x  =  y  \/  y  _E  x
) )
177, 10, 16syl2anc 408 . . 3  |-  ( ( A  e.  om  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) )
1817ralrimivva 2514 . 2  |-  ( A  e.  om  ->  A. x  e.  A  A. y  e.  A  ( x  _E  y  \/  x  =  y  \/  y  _E  x ) )
193, 18jca 304 1  |-  ( A  e.  om  ->  (  _E  We  A  /\  A. x  e.  A  A. y  e.  A  (
x  _E  y  \/  x  =  y  \/  y  _E  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 961    e. wcel 1480   A.wral 2416   class class class wbr 3932    _E cep 4212    We wwe 4255   Ord word 4287   omcom 4507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-nul 4057  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-iinf 4505
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-br 3933  df-opab 3993  df-tr 4030  df-eprel 4214  df-frfor 4256  df-frind 4257  df-wetr 4259  df-iord 4291  df-on 4293  df-suc 4296  df-iom 4508
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator