Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnwetri | Unicode version |
Description: A natural number is well-ordered by . More specifically, this order both satisfies and is trichotomous. (Contributed by Jim Kingdon, 25-Sep-2021.) |
Ref | Expression |
---|---|
nnwetri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 4596 | . . 3 | |
2 | ordwe 4560 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | simprl 526 | . . . . 5 | |
5 | simpl 108 | . . . . 5 | |
6 | elnn 4590 | . . . . 5 | |
7 | 4, 5, 6 | syl2anc 409 | . . . 4 |
8 | simprr 527 | . . . . 5 | |
9 | elnn 4590 | . . . . 5 | |
10 | 8, 5, 9 | syl2anc 409 | . . . 4 |
11 | nntri3or 6472 | . . . . 5 | |
12 | epel 4277 | . . . . . 6 | |
13 | biid 170 | . . . . . 6 | |
14 | epel 4277 | . . . . . 6 | |
15 | 12, 13, 14 | 3orbi123i 1184 | . . . . 5 |
16 | 11, 15 | sylibr 133 | . . . 4 |
17 | 7, 10, 16 | syl2anc 409 | . . 3 |
18 | 17 | ralrimivva 2552 | . 2 |
19 | 3, 18 | jca 304 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3o 972 wcel 2141 wral 2448 class class class wbr 3989 cep 4272 wwe 4315 word 4347 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-eprel 4274 df-frfor 4316 df-frind 4317 df-wetr 4319 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |