ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi1i Unicode version

Theorem 3anbi1i 1180
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
3anbi1i  |-  ( (
ph  /\  ch  /\  th ) 
<->  ( ps  /\  ch  /\ 
th ) )

Proof of Theorem 3anbi1i
StepHypRef Expression
1 3anbi1i.1 . 2  |-  ( ph  <->  ps )
2 biid 170 . 2  |-  ( ch  <->  ch )
3 biid 170 . 2  |-  ( th  <->  th )
41, 2, 33anbi123i 1178 1  |-  ( (
ph  /\  ch  /\  th ) 
<->  ( ps  /\  ch  /\ 
th ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  fzolb  10088  txcn  12915
  Copyright terms: Public domain W3C validator