ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alinexa Unicode version

Theorem alinexa 1596
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
alinexa  |-  ( A. x ( ph  ->  -. 
ps )  <->  -.  E. x
( ph  /\  ps )
)

Proof of Theorem alinexa
StepHypRef Expression
1 imnan 685 . . 3  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
21albii 1463 . 2  |-  ( A. x ( ph  ->  -. 
ps )  <->  A. x  -.  ( ph  /\  ps ) )
3 alnex 1492 . 2  |-  ( A. x  -.  ( ph  /\  ps )  <->  -.  E. x
( ph  /\  ps )
)
42, 3bitri 183 1  |-  ( A. x ( ph  ->  -. 
ps )  <->  -.  E. x
( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  sbnv  1881  ralnex  2458
  Copyright terms: Public domain W3C validator