Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albii | Unicode version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 |
Ref | Expression |
---|---|
albii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1456 | . 2 | |
2 | albii.1 | . 2 | |
3 | 1, 2 | mpg 1439 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2albii 1459 hbxfrbi 1460 nfbii 1461 19.26-2 1470 19.26-3an 1471 alrot3 1473 alrot4 1474 albiim 1475 2albiim 1476 alnex 1487 nfalt 1566 aaanh 1574 aaan 1575 alinexa 1591 exintrbi 1621 19.21-2 1655 19.31r 1669 equsalh 1714 equsal 1715 equsalv 1781 sbcof2 1798 dvelimfALT2 1805 19.23vv 1872 sbanv 1877 pm11.53 1883 nfsbxy 1930 nfsbxyt 1931 sbcomxyyz 1960 sb9 1967 sbnf2 1969 2sb6 1972 sbcom2v 1973 sb6a 1976 2sb6rf 1978 sbalyz 1987 sbal 1988 sbal1yz 1989 sbal1 1990 sbalv 1993 2exsb 1997 nfsb4t 2002 dvelimf 2003 dveeq1 2007 sbal2 2008 sb8eu 2027 sb8euh 2037 eu1 2039 eu2 2058 mo3h 2067 moanim 2088 2eu4 2107 exists1 2110 eqcom 2167 hblem 2274 abeq2 2275 abeq1 2276 nfceqi 2304 abid2f 2334 dfrex2dc 2457 ralbii2 2476 r2alf 2483 nfraldya 2501 r3al 2510 r19.21t 2541 r19.23t 2573 rabid2 2642 rabbi 2643 ralv 2743 ceqsralt 2753 gencbval 2774 rspc2gv 2842 ralab 2886 ralrab2 2891 euind 2913 reu2 2914 reu3 2916 rmo4 2919 reu8 2922 rmo3f 2923 rmoim 2927 2reuswapdc 2930 reuind 2931 2rmorex 2932 ra5 3039 rmo2ilem 3040 rmo3 3042 dfss2 3131 ss2ab 3210 ss2rab 3218 rabss 3219 uniiunlem 3231 dfdif3 3232 ddifstab 3254 ssequn1 3292 unss 3296 ralunb 3303 ssin 3344 ssddif 3356 n0rf 3421 eq0 3427 eqv 3428 rabeq0 3438 abeq0 3439 disj 3457 disj3 3461 rgenm 3511 pwss 3575 ralsnsg 3613 ralsns 3614 disjsn 3638 euabsn2 3645 snss 3702 snsssn 3741 dfnfc2 3807 uni0b 3814 unissb 3819 elintrab 3836 ssintrab 3847 intun 3855 intpr 3856 dfiin2g 3899 iunss 3907 dfdisj2 3961 cbvdisj 3969 disjnim 3973 dftr2 4082 dftr5 4083 trint 4095 zfnuleu 4106 vnex 4113 inex1 4116 repizf2lem 4140 axpweq 4150 zfpow 4154 axpow2 4155 axpow3 4156 exmid01 4177 zfpair2 4188 ssextss 4198 frirrg 4328 sucel 4388 zfun 4412 uniex2 4414 setindel 4515 setind 4516 elirr 4518 en2lp 4531 zfregfr 4551 tfi 4559 peano5 4575 ssrel 4692 ssrel2 4694 eqrelrel 4705 reliun 4725 raliunxp 4745 relop 4754 dmopab3 4817 dm0rn0 4821 reldm0 4822 cotr 4985 issref 4986 asymref 4989 intirr 4990 sb8iota 5160 dffun2 5198 dffun4 5199 dffun6f 5201 dffun4f 5204 dffun7 5215 funopab 5223 funcnv2 5248 funcnv 5249 funcnveq 5251 fun2cnv 5252 fun11 5255 fununi 5256 funcnvuni 5257 funimaexglem 5271 fnres 5304 fnopabg 5311 rexrnmpt 5628 dff13 5736 oprabidlem 5873 eqoprab2b 5900 mpo2eqb 5951 ralrnmpo 5956 dfer2 6502 pw1dc0el 6877 fiintim 6894 omniwomnimkv 7131 ltexprlemdisj 7547 recexprlemdisj 7571 nnwosdc 11972 isprm2 12049 bj-stal 13630 bj-nfalt 13645 bdceq 13724 bdcriota 13765 bj-axempty2 13776 bj-vprc 13778 bdinex1 13781 bj-zfpair2 13792 bj-uniex2 13798 bj-ssom 13818 bj-inf2vnlem2 13853 ss1oel2o 13873 |
Copyright terms: Public domain | W3C validator |