![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albii | Unicode version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1403 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1386 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2albii 1406 hbxfrbi 1407 nfbii 1408 19.26-2 1417 19.26-3an 1418 alrot3 1420 alrot4 1421 albiim 1422 2albiim 1423 alnex 1434 nfalt 1516 aaanh 1524 aaan 1525 alinexa 1540 exintrbi 1570 19.21-2 1603 19.31r 1617 equsalh 1662 equsal 1663 sbcof2 1739 dvelimfALT2 1746 19.23vv 1813 sbanv 1818 pm11.53 1824 nfsbxy 1867 nfsbxyt 1868 sbcomxyyz 1895 sb9 1904 sbnf2 1906 2sb6 1909 sbcom2v 1910 sb6a 1913 2sb6rf 1915 sbalyz 1924 sbal 1925 sbal1yz 1926 sbal1 1927 sbalv 1930 2exsb 1934 nfsb4t 1939 dvelimf 1940 dveeq1 1944 sbal2 1947 sb8eu 1962 sb8euh 1972 eu1 1974 eu2 1993 mo3h 2002 moanim 2023 2eu4 2042 exists1 2045 eqcom 2091 hblem 2196 abeq2 2197 abeq1 2198 nfceqi 2225 abid2f 2254 dfrex2dc 2372 ralbii2 2389 r2alf 2396 nfraldya 2413 r3al 2421 r19.21t 2449 r19.23t 2481 rabid2 2546 rabbi 2547 ralv 2639 ceqsralt 2649 gencbval 2670 rspc2gv 2736 ralab 2778 ralrab2 2783 euind 2805 reu2 2806 reu3 2808 rmo4 2811 reu8 2814 rmo3f 2815 rmoim 2819 2reuswapdc 2822 reuind 2823 2rmorex 2824 ra5 2930 rmo2ilem 2931 rmo3 2933 dfss2 3017 ss2ab 3092 ss2rab 3100 rabss 3101 uniiunlem 3112 dfdif3 3113 ddifstab 3135 ssequn1 3173 unss 3177 ralunb 3184 ssin 3225 ssddif 3236 n0rf 3301 eq0 3307 eqv 3308 rabeq0 3318 abeq0 3319 disj 3337 disj3 3341 rgenm 3390 pwss 3451 ralsnsg 3486 ralsns 3487 disjsn 3510 euabsn2 3517 snss 3574 snsssn 3613 dfnfc2 3679 uni0b 3686 unissb 3691 elintrab 3708 ssintrab 3719 intun 3727 intpr 3728 dfiin2g 3771 iunss 3779 dfdisj2 3832 cbvdisj 3840 disjnim 3844 dftr2 3946 dftr5 3947 trint 3959 zfnuleu 3971 vnex 3978 inex1 3981 repizf2lem 4004 axpweq 4014 zfpow 4018 axpow2 4019 axpow3 4020 exmid01 4040 zfpair2 4048 ssextss 4058 frirrg 4188 sucel 4248 zfun 4272 uniex2 4274 setindel 4369 setind 4370 elirr 4372 en2lp 4385 zfregfr 4404 tfi 4412 peano5 4428 ssrel 4541 ssrel2 4543 eqrelrel 4554 reliun 4573 raliunxp 4592 relop 4601 dmopab3 4664 dm0rn0 4668 reldm0 4669 cotr 4828 issref 4829 asymref 4832 intirr 4833 sb8iota 5002 dffun2 5040 dffun4 5041 dffun6f 5043 dffun4f 5046 dffun7 5057 funopab 5064 funcnv2 5089 funcnv 5090 funcnveq 5092 fun2cnv 5093 fun11 5096 fununi 5097 funcnvuni 5098 funimaexglem 5112 fnres 5145 fnopabg 5152 rexrnmpt 5458 dff13 5563 oprabidlem 5696 eqoprab2b 5723 mpt22eqb 5770 ralrnmpt2 5775 dfer2 6309 fiintim 6695 ltexprlemdisj 7228 recexprlemdisj 7252 isprm2 11440 bj-nfalt 11969 bdceq 12037 bdcriota 12078 bj-axempty2 12089 bj-vprc 12091 bdinex1 12094 bj-zfpair2 12105 bj-uniex2 12111 bj-ssom 12135 bj-inf2vnlem2 12170 ss1oel2o 12192 |
Copyright terms: Public domain | W3C validator |