| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albii | Unicode version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| albii.1 |
|
| Ref | Expression |
|---|---|
| albii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1514 |
. 2
| |
| 2 | albii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albii 1517 hbxfrbi 1518 nfbii 1519 19.26-2 1528 19.26-3an 1529 alrot3 1531 alrot4 1532 albiim 1533 2albiim 1534 alnex 1545 nfalt 1624 aaanh 1632 aaan 1633 alinexa 1649 exintrbi 1679 19.21-2 1713 19.31r 1727 equsalh 1772 equsal 1773 equsalv 1839 sbcof2 1856 dvelimfALT2 1863 19.23vv 1930 sbanv 1936 pm11.53 1942 nfsbxy 1993 nfsbxyt 1994 sbcomxyyz 2023 sb9 2030 sbnf2 2032 2sb6 2035 sbcom2v 2036 sb6a 2039 2sb6rf 2041 sbalyz 2050 sbal 2051 sbal1yz 2052 sbal1 2053 sbalv 2056 2exsb 2060 nfsb4t 2065 dvelimf 2066 dveeq1 2070 sbal2 2071 sb8eu 2090 sb8euh 2100 eu1 2102 eu2 2122 mo3h 2131 moanim 2152 2eu4 2171 exists1 2174 eqcom 2231 hblem 2337 abeq2 2338 abeq1 2339 nfceqi 2368 abid2f 2398 dfrex2dc 2521 ralbii2 2540 r2alf 2547 nfraldya 2565 r3al 2574 r19.21t 2605 r19.23t 2638 rabid2 2708 rabbi 2709 ralv 2817 ceqsralt 2827 gencbval 2849 rspc2gv 2919 ralab 2963 ralrab2 2968 euind 2990 reu2 2991 reu3 2993 rmo4 2996 reu8 2999 rmo3f 3000 rmoim 3004 2reuswapdc 3007 reuind 3008 2rmorex 3009 ra5 3118 rmo2ilem 3119 rmo3 3121 ssalel 3212 ss2ab 3292 ss2rab 3300 rabss 3301 uniiunlem 3313 dfdif3 3314 ddifstab 3336 ssequn1 3374 unss 3378 ralunb 3385 ssin 3426 ssddif 3438 n0rf 3504 eq0 3510 eqv 3511 rabeq0 3521 abeq0 3522 disj 3540 disj3 3544 pwss 3665 ralsnsg 3703 ralsns 3704 disjsn 3728 euabsn2 3735 snssOLD 3793 snssb 3800 snsssn 3838 dfnfc2 3905 uni0b 3912 unissb 3917 elintrab 3934 ssintrab 3945 intun 3953 intpr 3954 dfiin2g 3997 iunss 4005 dfdisj2 4060 cbvdisj 4068 disjnim 4072 dftr2 4183 dftr5 4184 trint 4196 zfnuleu 4207 vnex 4214 inex1 4217 repizf2lem 4244 axpweq 4254 zfpow 4258 axpow2 4259 axpow3 4260 exmid01 4281 zfpair2 4293 ssextss 4305 frirrg 4440 sucel 4500 zfun 4524 uniex2 4526 setindel 4629 setind 4630 elirr 4632 en2lp 4645 zfregfr 4665 tfi 4673 peano5 4689 ssrel 4806 ssrel2 4808 eqrelrel 4819 reliun 4839 raliunxp 4862 relop 4871 dmopab3 4935 dm0rn0 4939 reldm0 4940 cotr 5109 issref 5110 asymref 5113 intirr 5114 sb8iota 5285 dffun2 5327 dffun4 5328 dffun6f 5330 dffun4f 5333 dffun7 5344 funopab 5352 funcnv2 5380 funcnv 5381 funcnveq 5383 fun2cnv 5384 fun11 5387 fununi 5388 funcnvuni 5389 funimaexglem 5403 fnres 5439 fnopabg 5446 rexrnmpt 5777 dff13 5891 iotaexel 5958 oprabidlem 6031 eqoprab2b 6061 mpo2eqb 6113 ralrnmpo 6118 dfer2 6679 pw1dc0el 7069 fiintim 7089 omniwomnimkv 7330 ltexprlemdisj 7789 recexprlemdisj 7813 nnwosdc 12555 isprm2 12634 ivthdich 15321 bj-stal 16071 bj-nfalt 16086 bdceq 16163 bdcriota 16204 bj-axempty2 16215 bj-vprc 16217 bdinex1 16220 bj-zfpair2 16231 bj-uniex2 16237 bj-ssom 16257 bj-inf2vnlem2 16292 ss1oel2o 16313 |
| Copyright terms: Public domain | W3C validator |