![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albii | Unicode version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1468 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1451 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2albii 1471 hbxfrbi 1472 nfbii 1473 19.26-2 1482 19.26-3an 1483 alrot3 1485 alrot4 1486 albiim 1487 2albiim 1488 alnex 1499 nfalt 1578 aaanh 1586 aaan 1587 alinexa 1603 exintrbi 1633 19.21-2 1667 19.31r 1681 equsalh 1726 equsal 1727 equsalv 1793 sbcof2 1810 dvelimfALT2 1817 19.23vv 1884 sbanv 1889 pm11.53 1895 nfsbxy 1942 nfsbxyt 1943 sbcomxyyz 1972 sb9 1979 sbnf2 1981 2sb6 1984 sbcom2v 1985 sb6a 1988 2sb6rf 1990 sbalyz 1999 sbal 2000 sbal1yz 2001 sbal1 2002 sbalv 2005 2exsb 2009 nfsb4t 2014 dvelimf 2015 dveeq1 2019 sbal2 2020 sb8eu 2039 sb8euh 2049 eu1 2051 eu2 2070 mo3h 2079 moanim 2100 2eu4 2119 exists1 2122 eqcom 2179 hblem 2285 abeq2 2286 abeq1 2287 nfceqi 2315 abid2f 2345 dfrex2dc 2468 ralbii2 2487 r2alf 2494 nfraldya 2512 r3al 2521 r19.21t 2552 r19.23t 2584 rabid2 2654 rabbi 2655 ralv 2755 ceqsralt 2765 gencbval 2786 rspc2gv 2854 ralab 2898 ralrab2 2903 euind 2925 reu2 2926 reu3 2928 rmo4 2931 reu8 2934 rmo3f 2935 rmoim 2939 2reuswapdc 2942 reuind 2943 2rmorex 2944 ra5 3052 rmo2ilem 3053 rmo3 3055 dfss2 3145 ss2ab 3224 ss2rab 3232 rabss 3233 uniiunlem 3245 dfdif3 3246 ddifstab 3268 ssequn1 3306 unss 3310 ralunb 3317 ssin 3358 ssddif 3370 n0rf 3436 eq0 3442 eqv 3443 rabeq0 3453 abeq0 3454 disj 3472 disj3 3476 rgenm 3526 pwss 3592 ralsnsg 3630 ralsns 3631 disjsn 3655 euabsn2 3662 snssOLD 3719 snssb 3726 snsssn 3762 dfnfc2 3828 uni0b 3835 unissb 3840 elintrab 3857 ssintrab 3868 intun 3876 intpr 3877 dfiin2g 3920 iunss 3928 dfdisj2 3983 cbvdisj 3991 disjnim 3995 dftr2 4104 dftr5 4105 trint 4117 zfnuleu 4128 vnex 4135 inex1 4138 repizf2lem 4162 axpweq 4172 zfpow 4176 axpow2 4177 axpow3 4178 exmid01 4199 zfpair2 4211 ssextss 4221 frirrg 4351 sucel 4411 zfun 4435 uniex2 4437 setindel 4538 setind 4539 elirr 4541 en2lp 4554 zfregfr 4574 tfi 4582 peano5 4598 ssrel 4715 ssrel2 4717 eqrelrel 4728 reliun 4748 raliunxp 4769 relop 4778 dmopab3 4841 dm0rn0 4845 reldm0 4846 cotr 5011 issref 5012 asymref 5015 intirr 5016 sb8iota 5186 dffun2 5227 dffun4 5228 dffun6f 5230 dffun4f 5233 dffun7 5244 funopab 5252 funcnv2 5277 funcnv 5278 funcnveq 5280 fun2cnv 5281 fun11 5284 fununi 5285 funcnvuni 5286 funimaexglem 5300 fnres 5333 fnopabg 5340 rexrnmpt 5660 dff13 5769 oprabidlem 5906 eqoprab2b 5933 mpo2eqb 5984 ralrnmpo 5989 dfer2 6536 pw1dc0el 6911 fiintim 6928 omniwomnimkv 7165 ltexprlemdisj 7605 recexprlemdisj 7629 nnwosdc 12040 isprm2 12117 bj-stal 14504 bj-nfalt 14519 bdceq 14597 bdcriota 14638 bj-axempty2 14649 bj-vprc 14651 bdinex1 14654 bj-zfpair2 14665 bj-uniex2 14671 bj-ssom 14691 bj-inf2vnlem2 14726 ss1oel2o 14746 |
Copyright terms: Public domain | W3C validator |