![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albii | Unicode version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1462 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2albii 1482 hbxfrbi 1483 nfbii 1484 19.26-2 1493 19.26-3an 1494 alrot3 1496 alrot4 1497 albiim 1498 2albiim 1499 alnex 1510 nfalt 1589 aaanh 1597 aaan 1598 alinexa 1614 exintrbi 1644 19.21-2 1678 19.31r 1692 equsalh 1737 equsal 1738 equsalv 1804 sbcof2 1821 dvelimfALT2 1828 19.23vv 1895 sbanv 1901 pm11.53 1907 nfsbxy 1958 nfsbxyt 1959 sbcomxyyz 1988 sb9 1995 sbnf2 1997 2sb6 2000 sbcom2v 2001 sb6a 2004 2sb6rf 2006 sbalyz 2015 sbal 2016 sbal1yz 2017 sbal1 2018 sbalv 2021 2exsb 2025 nfsb4t 2030 dvelimf 2031 dveeq1 2035 sbal2 2036 sb8eu 2055 sb8euh 2065 eu1 2067 eu2 2086 mo3h 2095 moanim 2116 2eu4 2135 exists1 2138 eqcom 2195 hblem 2301 abeq2 2302 abeq1 2303 nfceqi 2332 abid2f 2362 dfrex2dc 2485 ralbii2 2504 r2alf 2511 nfraldya 2529 r3al 2538 r19.21t 2569 r19.23t 2601 rabid2 2671 rabbi 2672 ralv 2777 ceqsralt 2787 gencbval 2808 rspc2gv 2876 ralab 2920 ralrab2 2925 euind 2947 reu2 2948 reu3 2950 rmo4 2953 reu8 2956 rmo3f 2957 rmoim 2961 2reuswapdc 2964 reuind 2965 2rmorex 2966 ra5 3074 rmo2ilem 3075 rmo3 3077 dfss2 3168 ss2ab 3247 ss2rab 3255 rabss 3256 uniiunlem 3268 dfdif3 3269 ddifstab 3291 ssequn1 3329 unss 3333 ralunb 3340 ssin 3381 ssddif 3393 n0rf 3459 eq0 3465 eqv 3466 rabeq0 3476 abeq0 3477 disj 3495 disj3 3499 pwss 3617 ralsnsg 3655 ralsns 3656 disjsn 3680 euabsn2 3687 snssOLD 3744 snssb 3751 snsssn 3787 dfnfc2 3853 uni0b 3860 unissb 3865 elintrab 3882 ssintrab 3893 intun 3901 intpr 3902 dfiin2g 3945 iunss 3953 dfdisj2 4008 cbvdisj 4016 disjnim 4020 dftr2 4129 dftr5 4130 trint 4142 zfnuleu 4153 vnex 4160 inex1 4163 repizf2lem 4190 axpweq 4200 zfpow 4204 axpow2 4205 axpow3 4206 exmid01 4227 zfpair2 4239 ssextss 4249 frirrg 4381 sucel 4441 zfun 4465 uniex2 4467 setindel 4570 setind 4571 elirr 4573 en2lp 4586 zfregfr 4606 tfi 4614 peano5 4630 ssrel 4747 ssrel2 4749 eqrelrel 4760 reliun 4780 raliunxp 4803 relop 4812 dmopab3 4875 dm0rn0 4879 reldm0 4880 cotr 5047 issref 5048 asymref 5051 intirr 5052 sb8iota 5222 dffun2 5264 dffun4 5265 dffun6f 5267 dffun4f 5270 dffun7 5281 funopab 5289 funcnv2 5314 funcnv 5315 funcnveq 5317 fun2cnv 5318 fun11 5321 fununi 5322 funcnvuni 5323 funimaexglem 5337 fnres 5370 fnopabg 5377 rexrnmpt 5701 dff13 5811 iotaexel 5878 oprabidlem 5949 eqoprab2b 5976 mpo2eqb 6028 ralrnmpo 6033 dfer2 6588 pw1dc0el 6967 fiintim 6985 omniwomnimkv 7226 ltexprlemdisj 7666 recexprlemdisj 7690 nnwosdc 12176 isprm2 12255 ivthdich 14807 bj-stal 15241 bj-nfalt 15256 bdceq 15334 bdcriota 15375 bj-axempty2 15386 bj-vprc 15388 bdinex1 15391 bj-zfpair2 15402 bj-uniex2 15408 bj-ssom 15428 bj-inf2vnlem2 15463 ss1oel2o 15484 |
Copyright terms: Public domain | W3C validator |