![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > albii | Unicode version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
albii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | albii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpg 1462 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 2albii 1482 hbxfrbi 1483 nfbii 1484 19.26-2 1493 19.26-3an 1494 alrot3 1496 alrot4 1497 albiim 1498 2albiim 1499 alnex 1510 nfalt 1589 aaanh 1597 aaan 1598 alinexa 1614 exintrbi 1644 19.21-2 1678 19.31r 1692 equsalh 1737 equsal 1738 equsalv 1804 sbcof2 1821 dvelimfALT2 1828 19.23vv 1895 sbanv 1901 pm11.53 1907 nfsbxy 1958 nfsbxyt 1959 sbcomxyyz 1988 sb9 1995 sbnf2 1997 2sb6 2000 sbcom2v 2001 sb6a 2004 2sb6rf 2006 sbalyz 2015 sbal 2016 sbal1yz 2017 sbal1 2018 sbalv 2021 2exsb 2025 nfsb4t 2030 dvelimf 2031 dveeq1 2035 sbal2 2036 sb8eu 2055 sb8euh 2065 eu1 2067 eu2 2086 mo3h 2095 moanim 2116 2eu4 2135 exists1 2138 eqcom 2195 hblem 2301 abeq2 2302 abeq1 2303 nfceqi 2332 abid2f 2362 dfrex2dc 2485 ralbii2 2504 r2alf 2511 nfraldya 2529 r3al 2538 r19.21t 2569 r19.23t 2601 rabid2 2671 rabbi 2672 ralv 2777 ceqsralt 2787 gencbval 2809 rspc2gv 2877 ralab 2921 ralrab2 2926 euind 2948 reu2 2949 reu3 2951 rmo4 2954 reu8 2957 rmo3f 2958 rmoim 2962 2reuswapdc 2965 reuind 2966 2rmorex 2967 ra5 3075 rmo2ilem 3076 rmo3 3078 dfss2 3169 ss2ab 3248 ss2rab 3256 rabss 3257 uniiunlem 3269 dfdif3 3270 ddifstab 3292 ssequn1 3330 unss 3334 ralunb 3341 ssin 3382 ssddif 3394 n0rf 3460 eq0 3466 eqv 3467 rabeq0 3477 abeq0 3478 disj 3496 disj3 3500 pwss 3618 ralsnsg 3656 ralsns 3657 disjsn 3681 euabsn2 3688 snssOLD 3745 snssb 3752 snsssn 3788 dfnfc2 3854 uni0b 3861 unissb 3866 elintrab 3883 ssintrab 3894 intun 3902 intpr 3903 dfiin2g 3946 iunss 3954 dfdisj2 4009 cbvdisj 4017 disjnim 4021 dftr2 4130 dftr5 4131 trint 4143 zfnuleu 4154 vnex 4161 inex1 4164 repizf2lem 4191 axpweq 4201 zfpow 4205 axpow2 4206 axpow3 4207 exmid01 4228 zfpair2 4240 ssextss 4250 frirrg 4382 sucel 4442 zfun 4466 uniex2 4468 setindel 4571 setind 4572 elirr 4574 en2lp 4587 zfregfr 4607 tfi 4615 peano5 4631 ssrel 4748 ssrel2 4750 eqrelrel 4761 reliun 4781 raliunxp 4804 relop 4813 dmopab3 4876 dm0rn0 4880 reldm0 4881 cotr 5048 issref 5049 asymref 5052 intirr 5053 sb8iota 5223 dffun2 5265 dffun4 5266 dffun6f 5268 dffun4f 5271 dffun7 5282 funopab 5290 funcnv2 5315 funcnv 5316 funcnveq 5318 fun2cnv 5319 fun11 5322 fununi 5323 funcnvuni 5324 funimaexglem 5338 fnres 5371 fnopabg 5378 rexrnmpt 5702 dff13 5812 iotaexel 5879 oprabidlem 5950 eqoprab2b 5977 mpo2eqb 6029 ralrnmpo 6034 dfer2 6590 pw1dc0el 6969 fiintim 6987 omniwomnimkv 7228 ltexprlemdisj 7668 recexprlemdisj 7692 nnwosdc 12179 isprm2 12258 ivthdich 14832 bj-stal 15311 bj-nfalt 15326 bdceq 15404 bdcriota 15445 bj-axempty2 15456 bj-vprc 15458 bdinex1 15461 bj-zfpair2 15472 bj-uniex2 15478 bj-ssom 15498 bj-inf2vnlem2 15533 ss1oel2o 15554 |
Copyright terms: Public domain | W3C validator |