| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albii | Unicode version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| albii.1 |
|
| Ref | Expression |
|---|---|
| albii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1491 |
. 2
| |
| 2 | albii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1474 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albii 1494 hbxfrbi 1495 nfbii 1496 19.26-2 1505 19.26-3an 1506 alrot3 1508 alrot4 1509 albiim 1510 2albiim 1511 alnex 1522 nfalt 1601 aaanh 1609 aaan 1610 alinexa 1626 exintrbi 1656 19.21-2 1690 19.31r 1704 equsalh 1749 equsal 1750 equsalv 1816 sbcof2 1833 dvelimfALT2 1840 19.23vv 1907 sbanv 1913 pm11.53 1919 nfsbxy 1970 nfsbxyt 1971 sbcomxyyz 2000 sb9 2007 sbnf2 2009 2sb6 2012 sbcom2v 2013 sb6a 2016 2sb6rf 2018 sbalyz 2027 sbal 2028 sbal1yz 2029 sbal1 2030 sbalv 2033 2exsb 2037 nfsb4t 2042 dvelimf 2043 dveeq1 2047 sbal2 2048 sb8eu 2067 sb8euh 2077 eu1 2079 eu2 2098 mo3h 2107 moanim 2128 2eu4 2147 exists1 2150 eqcom 2207 hblem 2313 abeq2 2314 abeq1 2315 nfceqi 2344 abid2f 2374 dfrex2dc 2497 ralbii2 2516 r2alf 2523 nfraldya 2541 r3al 2550 r19.21t 2581 r19.23t 2613 rabid2 2683 rabbi 2684 ralv 2789 ceqsralt 2799 gencbval 2821 rspc2gv 2889 ralab 2933 ralrab2 2938 euind 2960 reu2 2961 reu3 2963 rmo4 2966 reu8 2969 rmo3f 2970 rmoim 2974 2reuswapdc 2977 reuind 2978 2rmorex 2979 ra5 3087 rmo2ilem 3088 rmo3 3090 ssalel 3181 ss2ab 3261 ss2rab 3269 rabss 3270 uniiunlem 3282 dfdif3 3283 ddifstab 3305 ssequn1 3343 unss 3347 ralunb 3354 ssin 3395 ssddif 3407 n0rf 3473 eq0 3479 eqv 3480 rabeq0 3490 abeq0 3491 disj 3509 disj3 3513 pwss 3632 ralsnsg 3670 ralsns 3671 disjsn 3695 euabsn2 3702 snssOLD 3759 snssb 3766 snsssn 3802 dfnfc2 3868 uni0b 3875 unissb 3880 elintrab 3897 ssintrab 3908 intun 3916 intpr 3917 dfiin2g 3960 iunss 3968 dfdisj2 4023 cbvdisj 4031 disjnim 4035 dftr2 4144 dftr5 4145 trint 4157 zfnuleu 4168 vnex 4175 inex1 4178 repizf2lem 4205 axpweq 4215 zfpow 4219 axpow2 4220 axpow3 4221 exmid01 4242 zfpair2 4254 ssextss 4264 frirrg 4397 sucel 4457 zfun 4481 uniex2 4483 setindel 4586 setind 4587 elirr 4589 en2lp 4602 zfregfr 4622 tfi 4630 peano5 4646 ssrel 4763 ssrel2 4765 eqrelrel 4776 reliun 4796 raliunxp 4819 relop 4828 dmopab3 4891 dm0rn0 4895 reldm0 4896 cotr 5064 issref 5065 asymref 5068 intirr 5069 sb8iota 5239 dffun2 5281 dffun4 5282 dffun6f 5284 dffun4f 5287 dffun7 5298 funopab 5306 funcnv2 5334 funcnv 5335 funcnveq 5337 fun2cnv 5338 fun11 5341 fununi 5342 funcnvuni 5343 funimaexglem 5357 fnres 5392 fnopabg 5399 rexrnmpt 5723 dff13 5837 iotaexel 5904 oprabidlem 5975 eqoprab2b 6003 mpo2eqb 6055 ralrnmpo 6060 dfer2 6621 pw1dc0el 7008 fiintim 7028 omniwomnimkv 7269 ltexprlemdisj 7719 recexprlemdisj 7743 nnwosdc 12360 isprm2 12439 ivthdich 15125 bj-stal 15685 bj-nfalt 15700 bdceq 15778 bdcriota 15819 bj-axempty2 15830 bj-vprc 15832 bdinex1 15835 bj-zfpair2 15846 bj-uniex2 15852 bj-ssom 15872 bj-inf2vnlem2 15907 ss1oel2o 15928 |
| Copyright terms: Public domain | W3C validator |