Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albii | Unicode version |
Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
albii.1 |
Ref | Expression |
---|---|
albii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albi 1445 | . 2 | |
2 | albii.1 | . 2 | |
3 | 1, 2 | mpg 1428 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wal 1330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2albii 1448 hbxfrbi 1449 nfbii 1450 19.26-2 1459 19.26-3an 1460 alrot3 1462 alrot4 1463 albiim 1464 2albiim 1465 alnex 1476 nfalt 1555 aaanh 1563 aaan 1564 alinexa 1580 exintrbi 1610 19.21-2 1644 19.31r 1658 equsalh 1703 equsal 1704 equsalv 1770 sbcof2 1787 dvelimfALT2 1794 19.23vv 1861 sbanv 1866 pm11.53 1872 nfsbxy 1919 nfsbxyt 1920 sbcomxyyz 1949 sb9 1956 sbnf2 1958 2sb6 1961 sbcom2v 1962 sb6a 1965 2sb6rf 1967 sbalyz 1976 sbal 1977 sbal1yz 1978 sbal1 1979 sbalv 1982 2exsb 1986 nfsb4t 1991 dvelimf 1992 dveeq1 1996 sbal2 1997 sb8eu 2016 sb8euh 2026 eu1 2028 eu2 2047 mo3h 2056 moanim 2077 2eu4 2096 exists1 2099 eqcom 2156 hblem 2262 abeq2 2263 abeq1 2264 nfceqi 2292 abid2f 2322 dfrex2dc 2445 ralbii2 2464 r2alf 2471 nfraldya 2489 r3al 2498 r19.21t 2529 r19.23t 2561 rabid2 2630 rabbi 2631 ralv 2726 ceqsralt 2736 gencbval 2757 rspc2gv 2825 ralab 2868 ralrab2 2873 euind 2895 reu2 2896 reu3 2898 rmo4 2901 reu8 2904 rmo3f 2905 rmoim 2909 2reuswapdc 2912 reuind 2913 2rmorex 2914 ra5 3021 rmo2ilem 3022 rmo3 3024 dfss2 3113 ss2ab 3192 ss2rab 3200 rabss 3201 uniiunlem 3212 dfdif3 3213 ddifstab 3235 ssequn1 3273 unss 3277 ralunb 3284 ssin 3325 ssddif 3337 n0rf 3402 eq0 3408 eqv 3409 rabeq0 3419 abeq0 3420 disj 3438 disj3 3442 rgenm 3492 pwss 3555 ralsnsg 3592 ralsns 3593 disjsn 3617 euabsn2 3624 snss 3681 snsssn 3720 dfnfc2 3786 uni0b 3793 unissb 3798 elintrab 3815 ssintrab 3826 intun 3834 intpr 3835 dfiin2g 3878 iunss 3886 dfdisj2 3940 cbvdisj 3948 disjnim 3952 dftr2 4060 dftr5 4061 trint 4073 zfnuleu 4084 vnex 4091 inex1 4094 repizf2lem 4117 axpweq 4127 zfpow 4131 axpow2 4132 axpow3 4133 exmid01 4154 zfpair2 4165 ssextss 4175 frirrg 4305 sucel 4365 zfun 4389 uniex2 4391 setindel 4491 setind 4492 elirr 4494 en2lp 4507 zfregfr 4527 tfi 4535 peano5 4551 ssrel 4667 ssrel2 4669 eqrelrel 4680 reliun 4700 raliunxp 4720 relop 4729 dmopab3 4792 dm0rn0 4796 reldm0 4797 cotr 4960 issref 4961 asymref 4964 intirr 4965 sb8iota 5135 dffun2 5173 dffun4 5174 dffun6f 5176 dffun4f 5179 dffun7 5190 funopab 5198 funcnv2 5223 funcnv 5224 funcnveq 5226 fun2cnv 5227 fun11 5230 fununi 5231 funcnvuni 5232 funimaexglem 5246 fnres 5279 fnopabg 5286 rexrnmpt 5603 dff13 5709 oprabidlem 5842 eqoprab2b 5869 mpo2eqb 5920 ralrnmpo 5925 dfer2 6470 pw1dc0el 6845 fiintim 6862 omniwomnimkv 7089 ltexprlemdisj 7505 recexprlemdisj 7529 isprm2 11965 bj-stal 13260 bj-nfalt 13276 bdceq 13355 bdcriota 13396 bj-axempty2 13407 bj-vprc 13409 bdinex1 13412 bj-zfpair2 13423 bj-uniex2 13429 bj-ssom 13449 bj-inf2vnlem2 13484 ss1oel2o 13504 |
Copyright terms: Public domain | W3C validator |