| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > albii | Unicode version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| albii.1 | 
 | 
| Ref | Expression | 
|---|---|
| albii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | albi 1482 | 
. 2
 | |
| 2 | albii.1 | 
. 2
 | |
| 3 | 1, 2 | mpg 1465 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 2albii 1485 hbxfrbi 1486 nfbii 1487 19.26-2 1496 19.26-3an 1497 alrot3 1499 alrot4 1500 albiim 1501 2albiim 1502 alnex 1513 nfalt 1592 aaanh 1600 aaan 1601 alinexa 1617 exintrbi 1647 19.21-2 1681 19.31r 1695 equsalh 1740 equsal 1741 equsalv 1807 sbcof2 1824 dvelimfALT2 1831 19.23vv 1898 sbanv 1904 pm11.53 1910 nfsbxy 1961 nfsbxyt 1962 sbcomxyyz 1991 sb9 1998 sbnf2 2000 2sb6 2003 sbcom2v 2004 sb6a 2007 2sb6rf 2009 sbalyz 2018 sbal 2019 sbal1yz 2020 sbal1 2021 sbalv 2024 2exsb 2028 nfsb4t 2033 dvelimf 2034 dveeq1 2038 sbal2 2039 sb8eu 2058 sb8euh 2068 eu1 2070 eu2 2089 mo3h 2098 moanim 2119 2eu4 2138 exists1 2141 eqcom 2198 hblem 2304 abeq2 2305 abeq1 2306 nfceqi 2335 abid2f 2365 dfrex2dc 2488 ralbii2 2507 r2alf 2514 nfraldya 2532 r3al 2541 r19.21t 2572 r19.23t 2604 rabid2 2674 rabbi 2675 ralv 2780 ceqsralt 2790 gencbval 2812 rspc2gv 2880 ralab 2924 ralrab2 2929 euind 2951 reu2 2952 reu3 2954 rmo4 2957 reu8 2960 rmo3f 2961 rmoim 2965 2reuswapdc 2968 reuind 2969 2rmorex 2970 ra5 3078 rmo2ilem 3079 rmo3 3081 dfss2 3172 ss2ab 3251 ss2rab 3259 rabss 3260 uniiunlem 3272 dfdif3 3273 ddifstab 3295 ssequn1 3333 unss 3337 ralunb 3344 ssin 3385 ssddif 3397 n0rf 3463 eq0 3469 eqv 3470 rabeq0 3480 abeq0 3481 disj 3499 disj3 3503 pwss 3621 ralsnsg 3659 ralsns 3660 disjsn 3684 euabsn2 3691 snssOLD 3748 snssb 3755 snsssn 3791 dfnfc2 3857 uni0b 3864 unissb 3869 elintrab 3886 ssintrab 3897 intun 3905 intpr 3906 dfiin2g 3949 iunss 3957 dfdisj2 4012 cbvdisj 4020 disjnim 4024 dftr2 4133 dftr5 4134 trint 4146 zfnuleu 4157 vnex 4164 inex1 4167 repizf2lem 4194 axpweq 4204 zfpow 4208 axpow2 4209 axpow3 4210 exmid01 4231 zfpair2 4243 ssextss 4253 frirrg 4385 sucel 4445 zfun 4469 uniex2 4471 setindel 4574 setind 4575 elirr 4577 en2lp 4590 zfregfr 4610 tfi 4618 peano5 4634 ssrel 4751 ssrel2 4753 eqrelrel 4764 reliun 4784 raliunxp 4807 relop 4816 dmopab3 4879 dm0rn0 4883 reldm0 4884 cotr 5051 issref 5052 asymref 5055 intirr 5056 sb8iota 5226 dffun2 5268 dffun4 5269 dffun6f 5271 dffun4f 5274 dffun7 5285 funopab 5293 funcnv2 5318 funcnv 5319 funcnveq 5321 fun2cnv 5322 fun11 5325 fununi 5326 funcnvuni 5327 funimaexglem 5341 fnres 5374 fnopabg 5381 rexrnmpt 5705 dff13 5815 iotaexel 5882 oprabidlem 5953 eqoprab2b 5980 mpo2eqb 6032 ralrnmpo 6037 dfer2 6593 pw1dc0el 6972 fiintim 6992 omniwomnimkv 7233 ltexprlemdisj 7673 recexprlemdisj 7697 nnwosdc 12206 isprm2 12285 ivthdich 14889 bj-stal 15395 bj-nfalt 15410 bdceq 15488 bdcriota 15529 bj-axempty2 15540 bj-vprc 15542 bdinex1 15545 bj-zfpair2 15556 bj-uniex2 15562 bj-ssom 15582 bj-inf2vnlem2 15617 ss1oel2o 15638 | 
| Copyright terms: Public domain | W3C validator |