| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > albii | Unicode version | ||
| Description: Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
| Ref | Expression |
|---|---|
| albii.1 |
|
| Ref | Expression |
|---|---|
| albii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albi 1492 |
. 2
| |
| 2 | albii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2albii 1495 hbxfrbi 1496 nfbii 1497 19.26-2 1506 19.26-3an 1507 alrot3 1509 alrot4 1510 albiim 1511 2albiim 1512 alnex 1523 nfalt 1602 aaanh 1610 aaan 1611 alinexa 1627 exintrbi 1657 19.21-2 1691 19.31r 1705 equsalh 1750 equsal 1751 equsalv 1817 sbcof2 1834 dvelimfALT2 1841 19.23vv 1908 sbanv 1914 pm11.53 1920 nfsbxy 1971 nfsbxyt 1972 sbcomxyyz 2001 sb9 2008 sbnf2 2010 2sb6 2013 sbcom2v 2014 sb6a 2017 2sb6rf 2019 sbalyz 2028 sbal 2029 sbal1yz 2030 sbal1 2031 sbalv 2034 2exsb 2038 nfsb4t 2043 dvelimf 2044 dveeq1 2048 sbal2 2049 sb8eu 2068 sb8euh 2078 eu1 2080 eu2 2100 mo3h 2109 moanim 2130 2eu4 2149 exists1 2152 eqcom 2209 hblem 2315 abeq2 2316 abeq1 2317 nfceqi 2346 abid2f 2376 dfrex2dc 2499 ralbii2 2518 r2alf 2525 nfraldya 2543 r3al 2552 r19.21t 2583 r19.23t 2615 rabid2 2685 rabbi 2686 ralv 2794 ceqsralt 2804 gencbval 2826 rspc2gv 2896 ralab 2940 ralrab2 2945 euind 2967 reu2 2968 reu3 2970 rmo4 2973 reu8 2976 rmo3f 2977 rmoim 2981 2reuswapdc 2984 reuind 2985 2rmorex 2986 ra5 3095 rmo2ilem 3096 rmo3 3098 ssalel 3189 ss2ab 3269 ss2rab 3277 rabss 3278 uniiunlem 3290 dfdif3 3291 ddifstab 3313 ssequn1 3351 unss 3355 ralunb 3362 ssin 3403 ssddif 3415 n0rf 3481 eq0 3487 eqv 3488 rabeq0 3498 abeq0 3499 disj 3517 disj3 3521 pwss 3642 ralsnsg 3680 ralsns 3681 disjsn 3705 euabsn2 3712 snssOLD 3770 snssb 3777 snsssn 3815 dfnfc2 3882 uni0b 3889 unissb 3894 elintrab 3911 ssintrab 3922 intun 3930 intpr 3931 dfiin2g 3974 iunss 3982 dfdisj2 4037 cbvdisj 4045 disjnim 4049 dftr2 4160 dftr5 4161 trint 4173 zfnuleu 4184 vnex 4191 inex1 4194 repizf2lem 4221 axpweq 4231 zfpow 4235 axpow2 4236 axpow3 4237 exmid01 4258 zfpair2 4270 ssextss 4282 frirrg 4415 sucel 4475 zfun 4499 uniex2 4501 setindel 4604 setind 4605 elirr 4607 en2lp 4620 zfregfr 4640 tfi 4648 peano5 4664 ssrel 4781 ssrel2 4783 eqrelrel 4794 reliun 4814 raliunxp 4837 relop 4846 dmopab3 4910 dm0rn0 4914 reldm0 4915 cotr 5083 issref 5084 asymref 5087 intirr 5088 sb8iota 5258 dffun2 5300 dffun4 5301 dffun6f 5303 dffun4f 5306 dffun7 5317 funopab 5325 funcnv2 5353 funcnv 5354 funcnveq 5356 fun2cnv 5357 fun11 5360 fununi 5361 funcnvuni 5362 funimaexglem 5376 fnres 5412 fnopabg 5419 rexrnmpt 5746 dff13 5860 iotaexel 5927 oprabidlem 5998 eqoprab2b 6026 mpo2eqb 6078 ralrnmpo 6083 dfer2 6644 pw1dc0el 7034 fiintim 7054 omniwomnimkv 7295 ltexprlemdisj 7754 recexprlemdisj 7778 nnwosdc 12475 isprm2 12554 ivthdich 15240 bj-stal 15885 bj-nfalt 15900 bdceq 15977 bdcriota 16018 bj-axempty2 16029 bj-vprc 16031 bdinex1 16034 bj-zfpair2 16045 bj-uniex2 16051 bj-ssom 16071 bj-inf2vnlem2 16106 ss1oel2o 16127 |
| Copyright terms: Public domain | W3C validator |