ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alinexa GIF version

Theorem alinexa 1596
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
alinexa (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))

Proof of Theorem alinexa
StepHypRef Expression
1 imnan 685 . . 3 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
21albii 1463 . 2 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ∀𝑥 ¬ (𝜑𝜓))
3 alnex 1492 . 2 (∀𝑥 ¬ (𝜑𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
42, 3bitri 183 1 (∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  sbnv  1881  ralnex  2458
  Copyright terms: Public domain W3C validator