ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imnan Unicode version

Theorem imnan 692
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.)
Assertion
Ref Expression
imnan  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )

Proof of Theorem imnan
StepHypRef Expression
1 pm3.2im 638 . . . 4  |-  ( ph  ->  ( ps  ->  -.  ( ph  ->  -.  ps )
) )
21imp 124 . . 3  |-  ( (
ph  /\  ps )  ->  -.  ( ph  ->  -. 
ps ) )
32con2i 628 . 2  |-  ( (
ph  ->  -.  ps )  ->  -.  ( ph  /\  ps ) )
4 pm3.2 139 . . 3  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
54con3rr3 634 . 2  |-  ( -.  ( ph  /\  ps )  ->  ( ph  ->  -. 
ps ) )
63, 5impbii 126 1  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imnani  693  nan  694  pm3.24  695  imanst  890  ianordc  901  pm5.17dc  906  dn1dc  963  xorbin  1404  xordc1  1413  alinexa  1626  dfrex2dc  2497  ralinexa  2533  rabeq0  3490  disj  3509  minel  3522  disjsn  3695  sotricim  4371  poirr2  5076  funun  5316  imadiflem  5354  imadif  5355  brprcneu  5571  2omotaplemap  7371  prltlu  7602  caucvgprlemnbj  7782  caucvgprprlemnbj  7808  suplocexprlemmu  7833  xrltnsym2  9918  fzp1nel  10228  fsumsplit  11751  sumsplitdc  11776  phiprmpw  12577  odzdvds  12601  pcdvdsb  12676  lgsne0  15548  lgsquadlem3  15589  bj-nnor  15707
  Copyright terms: Public domain W3C validator