| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | Unicode version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 640 |
. . . 4
| |
| 2 | 1 | imp 124 |
. . 3
|
| 3 | 2 | con2i 630 |
. 2
|
| 4 | pm3.2 139 |
. . 3
| |
| 5 | 4 | con3rr3 636 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 695 nan 696 mpnanrd 697 pm3.24 698 imanst 893 ianordc 904 pm5.17dc 909 dn1dc 966 xorbin 1426 xordc1 1435 alinexa 1649 dfrex2dc 2521 ralinexa 2557 rabeq0 3521 disj 3540 minel 3553 disjsn 3728 sotricim 4414 poirr2 5121 funun 5362 imadiflem 5400 imadif 5401 brprcneu 5620 2omotaplemap 7443 prltlu 7674 caucvgprlemnbj 7854 caucvgprprlemnbj 7880 suplocexprlemmu 7905 xrltnsym2 9990 fzp1nel 10300 fsumsplit 11918 sumsplitdc 11943 phiprmpw 12744 odzdvds 12768 pcdvdsb 12843 lgsne0 15717 lgsquadlem3 15758 bj-nnor 16098 |
| Copyright terms: Public domain | W3C validator |