![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imnan | Unicode version |
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
Ref | Expression |
---|---|
imnan |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 637 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | imp 124 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | con2i 627 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | pm3.2 139 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | con3rr3 633 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imnani 691 nan 692 pm3.24 693 imanst 888 ianordc 899 pm5.17dc 904 dn1dc 960 xorbin 1384 xordc1 1393 alinexa 1603 dfrex2dc 2468 ralinexa 2504 rabeq0 3453 disj 3472 minel 3485 disjsn 3655 sotricim 4324 poirr2 5022 funun 5261 imadiflem 5296 imadif 5297 brprcneu 5509 2omotaplemap 7256 prltlu 7486 caucvgprlemnbj 7666 caucvgprprlemnbj 7692 suplocexprlemmu 7717 xrltnsym2 9794 fzp1nel 10104 fsumsplit 11415 sumsplitdc 11440 phiprmpw 12222 odzdvds 12245 pcdvdsb 12319 lgsne0 14442 bj-nnor 14489 |
Copyright terms: Public domain | W3C validator |