ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imnan Unicode version

Theorem imnan 690
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.)
Assertion
Ref Expression
imnan  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )

Proof of Theorem imnan
StepHypRef Expression
1 pm3.2im 637 . . . 4  |-  ( ph  ->  ( ps  ->  -.  ( ph  ->  -.  ps )
) )
21imp 124 . . 3  |-  ( (
ph  /\  ps )  ->  -.  ( ph  ->  -. 
ps ) )
32con2i 627 . 2  |-  ( (
ph  ->  -.  ps )  ->  -.  ( ph  /\  ps ) )
4 pm3.2 139 . . 3  |-  ( ph  ->  ( ps  ->  ( ph  /\  ps ) ) )
54con3rr3 633 . 2  |-  ( -.  ( ph  /\  ps )  ->  ( ph  ->  -. 
ps ) )
63, 5impbii 126 1  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imnani  691  nan  692  pm3.24  693  imanst  888  ianordc  899  pm5.17dc  904  dn1dc  960  xorbin  1384  xordc1  1393  alinexa  1603  dfrex2dc  2468  ralinexa  2504  rabeq0  3453  disj  3472  minel  3485  disjsn  3655  sotricim  4324  poirr2  5022  funun  5261  imadiflem  5296  imadif  5297  brprcneu  5509  2omotaplemap  7256  prltlu  7486  caucvgprlemnbj  7666  caucvgprprlemnbj  7692  suplocexprlemmu  7717  xrltnsym2  9794  fzp1nel  10104  fsumsplit  11415  sumsplitdc  11440  phiprmpw  12222  odzdvds  12245  pcdvdsb  12319  lgsne0  14442  bj-nnor  14489
  Copyright terms: Public domain W3C validator