| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | Unicode version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 638 |
. . . 4
| |
| 2 | 1 | imp 124 |
. . 3
|
| 3 | 2 | con2i 628 |
. 2
|
| 4 | pm3.2 139 |
. . 3
| |
| 5 | 4 | con3rr3 634 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 692 nan 693 pm3.24 694 imanst 889 ianordc 900 pm5.17dc 905 dn1dc 962 xorbin 1395 xordc1 1404 alinexa 1617 dfrex2dc 2488 ralinexa 2524 rabeq0 3480 disj 3499 minel 3512 disjsn 3684 sotricim 4358 poirr2 5062 funun 5302 imadiflem 5337 imadif 5338 brprcneu 5551 2omotaplemap 7324 prltlu 7554 caucvgprlemnbj 7734 caucvgprprlemnbj 7760 suplocexprlemmu 7785 xrltnsym2 9869 fzp1nel 10179 fsumsplit 11572 sumsplitdc 11597 phiprmpw 12390 odzdvds 12414 pcdvdsb 12489 lgsne0 15279 lgsquadlem3 15320 bj-nnor 15380 |
| Copyright terms: Public domain | W3C validator |