| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | Unicode version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 638 |
. . . 4
| |
| 2 | 1 | imp 124 |
. . 3
|
| 3 | 2 | con2i 628 |
. 2
|
| 4 | pm3.2 139 |
. . 3
| |
| 5 | 4 | con3rr3 634 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 693 nan 694 pm3.24 695 imanst 890 ianordc 901 pm5.17dc 906 dn1dc 963 xorbin 1404 xordc1 1413 alinexa 1626 dfrex2dc 2497 ralinexa 2533 rabeq0 3490 disj 3509 minel 3522 disjsn 3695 sotricim 4371 poirr2 5076 funun 5316 imadiflem 5354 imadif 5355 brprcneu 5571 2omotaplemap 7371 prltlu 7602 caucvgprlemnbj 7782 caucvgprprlemnbj 7808 suplocexprlemmu 7833 xrltnsym2 9918 fzp1nel 10228 fsumsplit 11751 sumsplitdc 11776 phiprmpw 12577 odzdvds 12601 pcdvdsb 12676 lgsne0 15548 lgsquadlem3 15589 bj-nnor 15707 |
| Copyright terms: Public domain | W3C validator |