| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralnex | Unicode version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| ralnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 |
. 2
| |
| 2 | alinexa 1649 |
. . 3
| |
| 3 | df-rex 2514 |
. . 3
| |
| 4 | 2, 3 | xchbinxr 687 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie2 1540 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: nnral 2520 rexalim 2523 ralinexa 2557 nrex 2622 nrexdv 2623 ralnex2 2670 r19.30dc 2678 uni0b 3913 iindif2m 4033 f0rn0 5520 supmoti 7160 fodjuomnilemdc 7311 ismkvnex 7322 nninfwlpoimlemginf 7343 suprnubex 9100 icc0r 10122 ioo0 10479 ico0 10481 ioc0 10482 prmind2 12642 sqrt2irr 12684 umgrnloop0 15917 nconstwlpolem 16433 |
| Copyright terms: Public domain | W3C validator |