| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralnex | Unicode version | ||
| Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| ralnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | alinexa 1626 |
. . 3
| |
| 3 | df-rex 2490 |
. . 3
| |
| 4 | 2, 3 | xchbinxr 685 |
. 2
|
| 5 | 1, 4 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ie2 1517 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: nnral 2496 rexalim 2499 ralinexa 2533 nrex 2598 nrexdv 2599 ralnex2 2645 r19.30dc 2653 uni0b 3875 iindif2m 3995 f0rn0 5472 supmoti 7097 fodjuomnilemdc 7248 ismkvnex 7259 nninfwlpoimlemginf 7280 suprnubex 9028 icc0r 10050 ioo0 10404 ico0 10406 ioc0 10407 prmind2 12475 sqrt2irr 12517 nconstwlpolem 16041 |
| Copyright terms: Public domain | W3C validator |