![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralnex | Unicode version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
ralnex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2393 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | alinexa 1563 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-rex 2394 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | xchbinxr 655 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | bitri 183 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-5 1404 ax-gen 1406 ax-ie2 1451 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-fal 1318 df-ral 2393 df-rex 2394 |
This theorem is referenced by: rexalim 2402 ralinexa 2434 nrex 2496 nrexdv 2497 ralnex2 2543 uni0b 3725 iindif2m 3844 f0rn0 5273 supmoti 6830 fodjuomnilemdc 6964 suprnubex 8615 icc0r 9596 ioo0 9924 ico0 9926 ioc0 9927 prmind2 11641 sqrt2irr 11680 |
Copyright terms: Public domain | W3C validator |