ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralnex Unicode version

Theorem ralnex 2398
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
ralnex  |-  ( A. x  e.  A  -.  ph  <->  -. 
E. x  e.  A  ph )

Proof of Theorem ralnex
StepHypRef Expression
1 df-ral 2393 . 2  |-  ( A. x  e.  A  -.  ph  <->  A. x ( x  e.  A  ->  -.  ph )
)
2 alinexa 1563 . . 3  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  -. 
E. x ( x  e.  A  /\  ph ) )
3 df-rex 2394 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
42, 3xchbinxr 655 . 2  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  -. 
E. x  e.  A  ph )
51, 4bitri 183 1  |-  ( A. x  e.  A  -.  ph  <->  -. 
E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1310   E.wex 1449    e. wcel 1461   A.wral 2388   E.wrex 2389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-5 1404  ax-gen 1406  ax-ie2 1451
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-fal 1318  df-ral 2393  df-rex 2394
This theorem is referenced by:  rexalim  2402  ralinexa  2434  nrex  2496  nrexdv  2497  ralnex2  2543  uni0b  3725  iindif2m  3844  f0rn0  5273  supmoti  6830  fodjuomnilemdc  6964  suprnubex  8615  icc0r  9596  ioo0  9924  ico0  9926  ioc0  9927  prmind2  11641  sqrt2irr  11680
  Copyright terms: Public domain W3C validator