ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anabsan2 Unicode version

Theorem anabsan2 574
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) (Revised by NM, 1-Jan-2013.)
Hypothesis
Ref Expression
anabsan2.1  |-  ( (
ph  /\  ( ps  /\ 
ps ) )  ->  ch )
Assertion
Ref Expression
anabsan2  |-  ( (
ph  /\  ps )  ->  ch )

Proof of Theorem anabsan2
StepHypRef Expression
1 anabsan2.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ps ) )  ->  ch )
21an12s 555 . 2  |-  ( ( ps  /\  ( ph  /\ 
ps ) )  ->  ch )
32anabss7 573 1  |-  ( (
ph  /\  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  anabss3  575  anandirs  583
  Copyright terms: Public domain W3C validator