| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsass | Unicode version | ||
| Description: Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsass.v |
|
| lmodvsass.f |
|
| lmodvsass.s |
|
| lmodvsass.k |
|
| lmodvsass.t |
|
| Ref | Expression |
|---|---|
| lmodvsass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsass.v |
. . . . . . 7
| |
| 2 | eqid 2205 |
. . . . . . 7
| |
| 3 | lmodvsass.s |
. . . . . . 7
| |
| 4 | lmodvsass.f |
. . . . . . 7
| |
| 5 | lmodvsass.k |
. . . . . . 7
| |
| 6 | eqid 2205 |
. . . . . . 7
| |
| 7 | lmodvsass.t |
. . . . . . 7
| |
| 8 | eqid 2205 |
. . . . . . 7
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 14054 |
. . . . . 6
|
| 10 | 9 | simprld 530 |
. . . . 5
|
| 11 | 10 | 3expa 1206 |
. . . 4
|
| 12 | 11 | anabsan2 584 |
. . 3
|
| 13 | 12 | exp42 371 |
. 2
|
| 14 | 13 | 3imp2 1225 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-mulr 12923 df-sca 12925 df-vsca 12926 df-lmod 14051 |
| This theorem is referenced by: lmodvs0 14084 lmodvsneg 14093 lmodsubvs 14105 lmodsubdi 14106 lmodsubdir 14107 islss3 14141 lss1d 14145 |
| Copyright terms: Public domain | W3C validator |