ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsass Unicode version

Theorem lmodvsass 13869
Description: Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsass.v  |-  V  =  ( Base `  W
)
lmodvsass.f  |-  F  =  (Scalar `  W )
lmodvsass.s  |-  .x.  =  ( .s `  W )
lmodvsass.k  |-  K  =  ( Base `  F
)
lmodvsass.t  |-  .X.  =  ( .r `  F )
Assertion
Ref Expression
lmodvsass  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q  .x.  ( R 
.x.  X ) ) )

Proof of Theorem lmodvsass
StepHypRef Expression
1 lmodvsass.v . . . . . . 7  |-  V  =  ( Base `  W
)
2 eqid 2196 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
3 lmodvsass.s . . . . . . 7  |-  .x.  =  ( .s `  W )
4 lmodvsass.f . . . . . . 7  |-  F  =  (Scalar `  W )
5 lmodvsass.k . . . . . . 7  |-  K  =  ( Base `  F
)
6 eqid 2196 . . . . . . 7  |-  ( +g  `  F )  =  ( +g  `  F )
7 lmodvsass.t . . . . . . 7  |-  .X.  =  ( .r `  F )
8 eqid 2196 . . . . . . 7  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 13848 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X ( +g  `  W
) X ) )  =  ( ( R 
.x.  X ) ( +g  `  W ) ( R  .x.  X
) )  /\  (
( Q ( +g  `  F ) R ) 
.x.  X )  =  ( ( Q  .x.  X ) ( +g  `  W ) ( R 
.x.  X ) ) )  /\  ( ( ( Q  .X.  R
)  .x.  X )  =  ( Q  .x.  ( R  .x.  X ) )  /\  ( ( 1r `  F ) 
.x.  X )  =  X ) ) )
109simprld 530 . . . . 5  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( Q  .X.  R
)  .x.  X )  =  ( Q  .x.  ( R  .x.  X ) ) )
11103expa 1205 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  ( X  e.  V  /\  X  e.  V )
)  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q  .x.  ( R 
.x.  X ) ) )
1211anabsan2 584 . . 3  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  X  e.  V )  ->  (
( Q  .X.  R
)  .x.  X )  =  ( Q  .x.  ( R  .x.  X ) ) )
1312exp42 371 . 2  |-  ( W  e.  LMod  ->  ( Q  e.  K  ->  ( R  e.  K  ->  ( X  e.  V  -> 
( ( Q  .X.  R )  .x.  X
)  =  ( Q 
.x.  ( R  .x.  X ) ) ) ) ) )
14133imp2 1224 1  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q  .x.  ( R 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   1rcur 13515   LModclmod 13843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-lmod 13845
This theorem is referenced by:  lmodvs0  13878  lmodvsneg  13887  lmodsubvs  13899  lmodsubdi  13900  lmodsubdir  13901  islss3  13935  lss1d  13939
  Copyright terms: Public domain W3C validator