ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anandirs Unicode version

Theorem anandirs 561
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandirs.1  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  ch ) )  ->  ta )
Assertion
Ref Expression
anandirs  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ta )

Proof of Theorem anandirs
StepHypRef Expression
1 anandirs.1 . . 3  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  ch ) )  ->  ta )
21an4s 556 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ch ) )  ->  ta )
32anabsan2 552 1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  3impdir  1231  fvreseq  5417  phplem4  6625  muladd  7923  iccshftr  9472  iccshftl  9474  iccdil  9476  icccntr  9478  fzaddel  9534  fzsubel  9535  mulexp  10055
  Copyright terms: Public domain W3C validator