ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anandirs Unicode version

Theorem anandirs 593
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandirs.1  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  ch ) )  ->  ta )
Assertion
Ref Expression
anandirs  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ta )

Proof of Theorem anandirs
StepHypRef Expression
1 anandirs.1 . . 3  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  ch ) )  ->  ta )
21an4s 588 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ch ) )  ->  ta )
32anabsan2 584 1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  3impdir  1294  fvreseq  5621  phplem4  6857  muladd  8343  iccshftr  9996  iccshftl  9998  iccdil  10000  icccntr  10002  fzaddel  10061  fzsubel  10062  mulexp  10561  upxp  13811  uptx  13813
  Copyright terms: Public domain W3C validator