ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anandirs Unicode version

Theorem anandirs 588
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandirs.1  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  ch ) )  ->  ta )
Assertion
Ref Expression
anandirs  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ta )

Proof of Theorem anandirs
StepHypRef Expression
1 anandirs.1 . . 3  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  ch ) )  ->  ta )
21an4s 583 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  ch ) )  ->  ta )
32anabsan2 579 1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  3impdir  1289  fvreseq  5599  phplem4  6833  muladd  8303  iccshftr  9951  iccshftl  9953  iccdil  9955  icccntr  9957  fzaddel  10015  fzsubel  10016  mulexp  10515  upxp  13066  uptx  13068
  Copyright terms: Public domain W3C validator