ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsdi Unicode version

Theorem lmodvsdi 13644
Description: Distributive law for scalar product (left-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdi.v  |-  V  =  ( Base `  W
)
lmodvsdi.a  |-  .+  =  ( +g  `  W )
lmodvsdi.f  |-  F  =  (Scalar `  W )
lmodvsdi.s  |-  .x.  =  ( .s `  W )
lmodvsdi.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
lmodvsdi  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( R  .x.  ( X  .+  Y
) )  =  ( ( R  .x.  X
)  .+  ( R  .x.  Y ) ) )

Proof of Theorem lmodvsdi
StepHypRef Expression
1 lmodvsdi.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
2 lmodvsdi.a . . . . . . . . 9  |-  .+  =  ( +g  `  W )
3 lmodvsdi.s . . . . . . . . 9  |-  .x.  =  ( .s `  W )
4 lmodvsdi.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
5 lmodvsdi.k . . . . . . . . 9  |-  K  =  ( Base `  F
)
6 eqid 2189 . . . . . . . . 9  |-  ( +g  `  F )  =  ( +g  `  F )
7 eqid 2189 . . . . . . . . 9  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2189 . . . . . . . . 9  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 13625 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( Y  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) )  /\  ( ( R ( +g  `  F
) R )  .x.  X )  =  ( ( R  .x.  X
)  .+  ( R  .x.  X ) ) )  /\  ( ( ( R ( .r `  F ) R ) 
.x.  X )  =  ( R  .x.  ( R  .x.  X ) )  /\  ( ( 1r
`  F )  .x.  X )  =  X ) ) )
109simpld 112 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( Y  e.  V  /\  X  e.  V
) )  ->  (
( R  .x.  X
)  e.  V  /\  ( R  .x.  ( X 
.+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) )  /\  ( ( R ( +g  `  F
) R )  .x.  X )  =  ( ( R  .x.  X
)  .+  ( R  .x.  X ) ) ) )
1110simp2d 1012 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )  /\  ( Y  e.  V  /\  X  e.  V
) )  ->  ( R  .x.  ( X  .+  Y ) )  =  ( ( R  .x.  X )  .+  ( R  .x.  Y ) ) )
12113expia 1207 . . . . 5  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  R  e.  K )
)  ->  ( ( Y  e.  V  /\  X  e.  V )  ->  ( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) ) ) )
1312anabsan2 584 . . . 4  |-  ( ( W  e.  LMod  /\  R  e.  K )  ->  (
( Y  e.  V  /\  X  e.  V
)  ->  ( R  .x.  ( X  .+  Y
) )  =  ( ( R  .x.  X
)  .+  ( R  .x.  Y ) ) ) )
1413exp4b 367 . . 3  |-  ( W  e.  LMod  ->  ( R  e.  K  ->  ( Y  e.  V  ->  ( X  e.  V  -> 
( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) ) ) ) ) )
1514com34 83 . 2  |-  ( W  e.  LMod  ->  ( R  e.  K  ->  ( X  e.  V  ->  ( Y  e.  V  -> 
( R  .x.  ( X  .+  Y ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  Y ) ) ) ) ) )
16153imp2 1224 1  |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
)  ->  ( R  .x.  ( X  .+  Y
) )  =  ( ( R  .x.  X
)  .+  ( R  .x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5897   Basecbs 12515   +g cplusg 12592   .rcmulr 12593  Scalarcsca 12595   .scvsca 12596   1rcur 13330   LModclmod 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5900  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-mulr 12606  df-sca 12608  df-vsca 12609  df-lmod 13622
This theorem is referenced by:  lmodcom  13666  lmodsubdi  13677  islss3  13712
  Copyright terms: Public domain W3C validator