ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss0cl Unicode version

Theorem lss0cl 13865
Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z  |-  .0.  =  ( 0g `  W )
lss0cl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss0cl  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  .0.  e.  U )

Proof of Theorem lss0cl
Dummy variables  x  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2193 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3 eqid 2193 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2193 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
5 eqid 2193 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
6 lss0cl.s . . . . 5  |-  S  =  ( LSubSp `  W )
71, 2, 3, 4, 5, 6islssmg 13854 . . . 4  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. x  x  e.  U  /\  A. a  e.  ( Base `  (Scalar `  W )
) A. b  e.  U  A. c  e.  U  ( ( a ( .s `  W
) b ) ( +g  `  W ) c )  e.  U
) ) )
87biimpa 296 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  ( Base `  W
)  /\  E. x  x  e.  U  /\  A. a  e.  ( Base `  (Scalar `  W )
) A. b  e.  U  A. c  e.  U  ( ( a ( .s `  W
) b ) ( +g  `  W ) c )  e.  U
) )
98simp2d 1012 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  E. x  x  e.  U )
10 simp1 999 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  W  e.  LMod )
113, 6lsselg 13857 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  x  e.  ( Base `  W
) )
12 lss0cl.z . . . . . . 7  |-  .0.  =  ( 0g `  W )
13 eqid 2193 . . . . . . 7  |-  ( -g `  W )  =  (
-g `  W )
143, 12, 13lmodsubid 13843 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  W
) )  ->  (
x ( -g `  W
) x )  =  .0.  )
1510, 11, 14syl2anc 411 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  (
x ( -g `  W
) x )  =  .0.  )
1613, 6lssvsubcl 13862 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  U  /\  x  e.  U ) )  -> 
( x ( -g `  W ) x )  e.  U )
1716anabsan2 584 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( x
( -g `  W ) x )  e.  U
)
18173impa 1196 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  (
x ( -g `  W
) x )  e.  U )
1915, 18eqeltrrd 2271 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  .0.  e.  U )
20193expia 1207 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
x  e.  U  ->  .0.  e.  U ) )
2120exlimdv 1830 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( E. x  x  e.  U  ->  .0.  e.  U
) )
229, 21mpd 13 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  .0.  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Scalarcsca 12698   .scvsca 12699   0gc0g 12867   -gcsg 13074   LModclmod 13783   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mgp 13417  df-ur 13456  df-ring 13494  df-lmod 13785  df-lssm 13849
This theorem is referenced by:  lss0ss  13867  lssvneln0  13869  lssvscl  13871  lsssubg  13873  lssintclm  13880  lidl0cl  13979
  Copyright terms: Public domain W3C validator