ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss0cl Unicode version

Theorem lss0cl 13868
Description: The zero vector belongs to every subspace. (Contributed by NM, 12-Jan-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z  |-  .0.  =  ( 0g `  W )
lss0cl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss0cl  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  .0.  e.  U )

Proof of Theorem lss0cl
Dummy variables  x  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2193 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3 eqid 2193 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
4 eqid 2193 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
5 eqid 2193 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
6 lss0cl.s . . . . 5  |-  S  =  ( LSubSp `  W )
71, 2, 3, 4, 5, 6islssmg 13857 . . . 4  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  ( Base `  W
)  /\  E. x  x  e.  U  /\  A. a  e.  ( Base `  (Scalar `  W )
) A. b  e.  U  A. c  e.  U  ( ( a ( .s `  W
) b ) ( +g  `  W ) c )  e.  U
) ) )
87biimpa 296 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  C_  ( Base `  W
)  /\  E. x  x  e.  U  /\  A. a  e.  ( Base `  (Scalar `  W )
) A. b  e.  U  A. c  e.  U  ( ( a ( .s `  W
) b ) ( +g  `  W ) c )  e.  U
) )
98simp2d 1012 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  E. x  x  e.  U )
10 simp1 999 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  W  e.  LMod )
113, 6lsselg 13860 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  x  e.  ( Base `  W
) )
12 lss0cl.z . . . . . . 7  |-  .0.  =  ( 0g `  W )
13 eqid 2193 . . . . . . 7  |-  ( -g `  W )  =  (
-g `  W )
143, 12, 13lmodsubid 13846 . . . . . 6  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  W
) )  ->  (
x ( -g `  W
) x )  =  .0.  )
1510, 11, 14syl2anc 411 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  (
x ( -g `  W
) x )  =  .0.  )
1613, 6lssvsubcl 13865 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( x  e.  U  /\  x  e.  U ) )  -> 
( x ( -g `  W ) x )  e.  U )
1716anabsan2 584 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  x  e.  U
)  ->  ( x
( -g `  W ) x )  e.  U
)
18173impa 1196 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  (
x ( -g `  W
) x )  e.  U )
1915, 18eqeltrrd 2271 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  S  /\  x  e.  U )  ->  .0.  e.  U )
20193expia 1207 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  (
x  e.  U  ->  .0.  e.  U ) )
2120exlimdv 1830 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( E. x  x  e.  U  ->  .0.  e.  U
) )
229, 21mpd 13 1  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  .0.  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698  Scalarcsca 12701   .scvsca 12702   0gc0g 12870   -gcsg 13077   LModclmod 13786   LSubSpclss 13851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mgp 13420  df-ur 13459  df-ring 13497  df-lmod 13788  df-lssm 13852
This theorem is referenced by:  lss0ss  13870  lssvneln0  13872  lssvscl  13874  lsssubg  13876  lssintclm  13883  lidl0cl  13982
  Copyright terms: Public domain W3C validator