| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodvsdir | Unicode version | ||
| Description: Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsdir.v |
|
| lmodvsdir.a |
|
| lmodvsdir.f |
|
| lmodvsdir.s |
|
| lmodvsdir.k |
|
| lmodvsdir.p |
|
| Ref | Expression |
|---|---|
| lmodvsdir |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdir.v |
. . . . . . . 8
| |
| 2 | lmodvsdir.a |
. . . . . . . 8
| |
| 3 | lmodvsdir.s |
. . . . . . . 8
| |
| 4 | lmodvsdir.f |
. . . . . . . 8
| |
| 5 | lmodvsdir.k |
. . . . . . . 8
| |
| 6 | lmodvsdir.p |
. . . . . . . 8
| |
| 7 | eqid 2206 |
. . . . . . . 8
| |
| 8 | eqid 2206 |
. . . . . . . 8
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmodlema 14129 |
. . . . . . 7
|
| 10 | 9 | simpld 112 |
. . . . . 6
|
| 11 | 10 | simp3d 1014 |
. . . . 5
|
| 12 | 11 | 3expa 1206 |
. . . 4
|
| 13 | 12 | anabsan2 584 |
. . 3
|
| 14 | 13 | exp42 371 |
. 2
|
| 15 | 14 | 3imp2 1225 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-lmod 14126 |
| This theorem is referenced by: lmod0vs 14158 lmodvsmmulgdi 14160 lmodvneg1 14167 lmodcom 14170 lmodsubdir 14182 islss3 14216 lss1d 14220 |
| Copyright terms: Public domain | W3C validator |