ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvsdir Unicode version

Theorem lmodvsdir 13992
Description: Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmodvsdir.v  |-  V  =  ( Base `  W
)
lmodvsdir.a  |-  .+  =  ( +g  `  W )
lmodvsdir.f  |-  F  =  (Scalar `  W )
lmodvsdir.s  |-  .x.  =  ( .s `  W )
lmodvsdir.k  |-  K  =  ( Base `  F
)
lmodvsdir.p  |-  .+^  =  ( +g  `  F )
Assertion
Ref Expression
lmodvsdir  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )

Proof of Theorem lmodvsdir
StepHypRef Expression
1 lmodvsdir.v . . . . . . . 8  |-  V  =  ( Base `  W
)
2 lmodvsdir.a . . . . . . . 8  |-  .+  =  ( +g  `  W )
3 lmodvsdir.s . . . . . . . 8  |-  .x.  =  ( .s `  W )
4 lmodvsdir.f . . . . . . . 8  |-  F  =  (Scalar `  W )
5 lmodvsdir.k . . . . . . . 8  |-  K  =  ( Base `  F
)
6 lmodvsdir.p . . . . . . . 8  |-  .+^  =  ( +g  `  F )
7 eqid 2204 . . . . . . . 8  |-  ( .r
`  F )  =  ( .r `  F
)
8 eqid 2204 . . . . . . . 8  |-  ( 1r
`  F )  =  ( 1r `  F
)
91, 2, 3, 4, 5, 6, 7, 8lmodlema 13972 . . . . . . 7  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( ( R  .x.  X )  e.  V  /\  ( R  .x.  ( X  .+  X ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  X ) )  /\  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )  /\  ( ( ( Q ( .r `  F ) R ) 
.x.  X )  =  ( Q  .x.  ( R  .x.  X ) )  /\  ( ( 1r
`  F )  .x.  X )  =  X ) ) )
109simpld 112 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( R  .x.  X
)  e.  V  /\  ( R  .x.  ( X 
.+  X ) )  =  ( ( R 
.x.  X )  .+  ( R  .x.  X ) )  /\  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) ) )
1110simp3d 1013 . . . . 5  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K )  /\  ( X  e.  V  /\  X  e.  V
) )  ->  (
( Q  .+^  R ) 
.x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
12113expa 1205 . . . 4  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  ( X  e.  V  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )
1312anabsan2 584 . . 3  |-  ( ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K
) )  /\  X  e.  V )  ->  (
( Q  .+^  R ) 
.x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
1413exp42 371 . 2  |-  ( W  e.  LMod  ->  ( Q  e.  K  ->  ( R  e.  K  ->  ( X  e.  V  -> 
( ( Q  .+^  R )  .x.  X )  =  ( ( Q 
.x.  X )  .+  ( R  .x.  X ) ) ) ) ) )
15143imp2 1224 1  |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
)  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X
)  .+  ( R  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5268  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   .rcmulr 12829  Scalarcsca 12831   .scvsca 12832   1rcur 13639   LModclmod 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-ov 5937  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-mulr 12842  df-sca 12844  df-vsca 12845  df-lmod 13969
This theorem is referenced by:  lmod0vs  14001  lmodvsmmulgdi  14003  lmodvneg1  14010  lmodcom  14013  lmodsubdir  14025  islss3  14059  lss1d  14063
  Copyright terms: Public domain W3C validator