ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancom1s Unicode version

Theorem ancom1s 569
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypothesis
Ref Expression
an32s.1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Assertion
Ref Expression
ancom1s  |-  ( ( ( ps  /\  ph )  /\  ch )  ->  th )

Proof of Theorem ancom1s
StepHypRef Expression
1 pm3.22 265 . 2  |-  ( ( ps  /\  ph )  ->  ( ph  /\  ps ) )
2 an32s.1 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
31, 2sylan 283 1  |-  ( ( ( ps  /\  ph )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  bilukdc  1396  prarloc  7504  leltadd  8406  divmul13ap  8674  modqmulmodr  10392  fzomaxdif  11124  lgsdir2  14519
  Copyright terms: Public domain W3C validator