ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmulmodr Unicode version

Theorem modqmulmodr 10557
Description: The product of an integer and a rational number modulo a modulus equals the product of the integer and the rational number modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqmulmodr  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( A  x.  B )  mod 
M ) )

Proof of Theorem modqmulmodr
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  A  e.  ZZ )
21zcnd 9516 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  A  e.  CC )
3 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  B  e.  QQ )
4 simprl 529 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  M  e.  QQ )
5 simprr 531 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
0  <  M )
63, 4, 5modqcld 10495 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( B  mod  M
)  e.  QQ )
7 qcn 9775 . . . . 5  |-  ( ( B  mod  M )  e.  QQ  ->  ( B  mod  M )  e.  CC )
86, 7syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( B  mod  M
)  e.  CC )
92, 8mulcomd 8114 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( A  x.  ( B  mod  M ) )  =  ( ( B  mod  M )  x.  A ) )
109oveq1d 5972 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( ( B  mod  M )  x.  A )  mod 
M ) )
11 modqmulmod 10556 . . 3  |-  ( ( ( B  e.  QQ  /\  A  e.  ZZ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( B  mod  M )  x.  A )  mod  M
)  =  ( ( B  x.  A )  mod  M ) )
1211ancom1s 569 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( ( B  mod  M )  x.  A )  mod  M
)  =  ( ( B  x.  A )  mod  M ) )
13 qcn 9775 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  CC )
143, 13syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  ->  B  e.  CC )
1514, 2mulcomd 8114 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( B  x.  A
)  =  ( A  x.  B ) )
1615oveq1d 5972 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( B  x.  A )  mod  M
)  =  ( ( A  x.  B )  mod  M ) )
1710, 12, 163eqtrd 2243 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  QQ )  /\  ( M  e.  QQ  /\  0  < 
M ) )  -> 
( ( A  x.  ( B  mod  M ) )  mod  M )  =  ( ( A  x.  B )  mod 
M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   class class class wbr 4051  (class class class)co 5957   CCcc 7943   0cc0 7945    x. cmul 7950    < clt 8127   ZZcz 9392   QQcq 9760    mod cmo 10489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-n0 9316  df-z 9393  df-q 9761  df-rp 9796  df-fl 10435  df-mod 10490
This theorem is referenced by:  gausslemma2dlem6  15619
  Copyright terms: Public domain W3C validator