| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | Unicode version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 |
|
| Ref | Expression |
|---|---|
| an32s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 |
. 2
| |
| 2 | an32s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5473 foco 5531 fun11iun 5565 fconstfvm 5825 isocnv 5903 f1oiso 5918 f1ocnvfv3 5956 tfrcl 6473 mapxpen 6970 findcard 7011 exmidfodomrlemim 7340 genpassl 7672 genpassu 7673 axsuploc 8180 cnegexlem3 8284 recexaplem2 8760 divap0 8792 dfinfre 9064 qreccl 9798 xrlttr 9952 addmodlteq 10580 cau3lem 11540 climcn1 11734 climcn2 11735 climcaucn 11777 ntrivcvgap 11974 rplpwr 12463 dvdssq 12467 nn0seqcvgd 12478 lcmgcdlem 12514 isprm6 12584 phiprmpw 12659 pcneg 12763 prmpwdvds 12793 4sqlem19 12847 grpinveu 13485 mulgnn0subcl 13586 mulgsubcl 13587 mhmmulg 13614 ghmmulg 13707 ringrghm 13939 dvdsrcl2 13976 crngunit 13988 dvdsrpropdg 14024 lss1d 14260 quscrng 14410 mulgghm2 14485 tgcl 14651 innei 14750 cncnp 14817 cnnei 14819 elbl2ps 14979 elbl2 14980 cncfco 15178 cnlimc 15259 |
| Copyright terms: Public domain | W3C validator |