| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | Unicode version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 |
|
| Ref | Expression |
|---|---|
| an32s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 |
. 2
| |
| 2 | an32s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 616 fssres 5501 foco 5559 fun11iun 5593 fconstfvm 5857 isocnv 5935 f1oiso 5950 f1ocnvfv3 5990 tfrcl 6510 mapxpen 7009 findcard 7050 exmidfodomrlemim 7379 genpassl 7711 genpassu 7712 axsuploc 8219 cnegexlem3 8323 recexaplem2 8799 divap0 8831 dfinfre 9103 qreccl 9837 xrlttr 9991 addmodlteq 10620 cau3lem 11625 climcn1 11819 climcn2 11820 climcaucn 11862 ntrivcvgap 12059 rplpwr 12548 dvdssq 12552 nn0seqcvgd 12563 lcmgcdlem 12599 isprm6 12669 phiprmpw 12744 pcneg 12848 prmpwdvds 12878 4sqlem19 12932 grpinveu 13571 mulgnn0subcl 13672 mulgsubcl 13673 mhmmulg 13700 ghmmulg 13793 ringrghm 14025 dvdsrcl2 14063 crngunit 14075 dvdsrpropdg 14111 lss1d 14347 quscrng 14497 mulgghm2 14572 tgcl 14738 innei 14837 cncnp 14904 cnnei 14906 elbl2ps 15066 elbl2 15067 cncfco 15265 cnlimc 15346 |
| Copyright terms: Public domain | W3C validator |