| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | Unicode version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 |
|
| Ref | Expression |
|---|---|
| an32s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 |
. 2
| |
| 2 | an32s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5451 foco 5509 fun11iun 5543 fconstfvm 5802 isocnv 5880 f1oiso 5895 f1ocnvfv3 5933 tfrcl 6450 mapxpen 6945 findcard 6985 exmidfodomrlemim 7309 genpassl 7637 genpassu 7638 axsuploc 8145 cnegexlem3 8249 recexaplem2 8725 divap0 8757 dfinfre 9029 qreccl 9763 xrlttr 9917 addmodlteq 10543 cau3lem 11425 climcn1 11619 climcn2 11620 climcaucn 11662 ntrivcvgap 11859 rplpwr 12348 dvdssq 12352 nn0seqcvgd 12363 lcmgcdlem 12399 isprm6 12469 phiprmpw 12544 pcneg 12648 prmpwdvds 12678 4sqlem19 12732 grpinveu 13370 mulgnn0subcl 13471 mulgsubcl 13472 mhmmulg 13499 ghmmulg 13592 ringrghm 13824 dvdsrcl2 13861 crngunit 13873 dvdsrpropdg 13909 lss1d 14145 quscrng 14295 mulgghm2 14370 tgcl 14536 innei 14635 cncnp 14702 cnnei 14704 elbl2ps 14864 elbl2 14865 cncfco 15063 cnlimc 15144 |
| Copyright terms: Public domain | W3C validator |