| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an32s | Unicode version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
| Ref | Expression |
|---|---|
| an32s.1 |
|
| Ref | Expression |
|---|---|
| an32s |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32 562 |
. 2
| |
| 2 | an32s.1 |
. 2
| |
| 3 | 1, 2 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anass1rs 571 anabss1 576 biadanid 614 fssres 5453 foco 5511 fun11iun 5545 fconstfvm 5804 isocnv 5882 f1oiso 5897 f1ocnvfv3 5935 tfrcl 6452 mapxpen 6947 findcard 6987 exmidfodomrlemim 7311 genpassl 7639 genpassu 7640 axsuploc 8147 cnegexlem3 8251 recexaplem2 8727 divap0 8759 dfinfre 9031 qreccl 9765 xrlttr 9919 addmodlteq 10545 cau3lem 11458 climcn1 11652 climcn2 11653 climcaucn 11695 ntrivcvgap 11892 rplpwr 12381 dvdssq 12385 nn0seqcvgd 12396 lcmgcdlem 12432 isprm6 12502 phiprmpw 12577 pcneg 12681 prmpwdvds 12711 4sqlem19 12765 grpinveu 13403 mulgnn0subcl 13504 mulgsubcl 13505 mhmmulg 13532 ghmmulg 13625 ringrghm 13857 dvdsrcl2 13894 crngunit 13906 dvdsrpropdg 13942 lss1d 14178 quscrng 14328 mulgghm2 14403 tgcl 14569 innei 14668 cncnp 14735 cnnei 14737 elbl2ps 14897 elbl2 14898 cncfco 15096 cnlimc 15177 |
| Copyright terms: Public domain | W3C validator |