ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc Unicode version

Theorem prarloc 7563
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance  P, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7564 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
Distinct variable groups:    L, a, b    P, a, b    U, a, b

Proof of Theorem prarloc
Dummy variables  m  n  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 7537 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  E. x  e.  Q.  x  e.  L )
2 df-rex 2478 . . . . . . 7  |-  ( E. x  e.  Q.  x  e.  L  <->  E. x ( x  e.  Q.  /\  x  e.  L ) )
31, 2sylib 122 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  E. x ( x  e.  Q.  /\  x  e.  L ) )
43adantr 276 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. x
( x  e.  Q.  /\  x  e.  L ) )
5 prmu 7538 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  E. y  e.  Q.  y  e.  U )
6 df-rex 2478 . . . . . . 7  |-  ( E. y  e.  Q.  y  e.  U  <->  E. y ( y  e.  Q.  /\  y  e.  U ) )
75, 6sylib 122 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  E. y ( y  e.  Q.  /\  y  e.  U ) )
87adantr 276 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. y
( y  e.  Q.  /\  y  e.  U ) )
9 subhalfnqq 7474 . . . . . . . . 9  |-  ( P  e.  Q.  ->  E. q  e.  Q.  ( q  +Q  q )  <Q  P )
109adantl 277 . . . . . . . 8  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q  e.  Q.  ( q  +Q  q )  <Q  P )
11 df-rex 2478 . . . . . . . 8  |-  ( E. q  e.  Q.  (
q  +Q  q ) 
<Q  P  <->  E. q ( q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P ) )
1210, 11sylib 122 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )
1312ancli 323 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  E. q
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )
14 19.42v 1918 . . . . . 6  |-  ( E. q ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )  <-> 
( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  E. q ( q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P ) ) )
1513, 14sylibr 134 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q
( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )
16 eeeanv 1949 . . . . 5  |-  ( E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  <->  ( E. x
( x  e.  Q.  /\  x  e.  L )  /\  E. y ( y  e.  Q.  /\  y  e.  U )  /\  E. q ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) ) )
174, 8, 15, 16syl3anbrc 1183 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) ) )
18 prarloclemarch2 7479 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  x  e.  Q.  /\  q  e.  Q. )  ->  E. n  e.  N.  ( 1o  <N  n  /\  y  <Q  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) ) ) )
19 df-rex 2478 . . . . . . . . . . . . . 14  |-  ( E. n  e.  N.  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) )  <->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
2018, 19sylib 122 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  x  e.  Q.  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
21203com12 1209 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
22213adant1r 1233 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  y  e.  Q.  /\  q  e.  Q. )  ->  E. n ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )
23223adant2r 1235 . . . . . . . . . 10  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
24233adant3r 1237 . . . . . . . . 9  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )  ->  E. n ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )
25243adant3l 1236 . . . . . . . 8  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
2625ancli 323 . . . . . . 7  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  ( (
( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) ) )
27 19.42v 1918 . . . . . . 7  |-  ( E. n ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  <->  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) ) )
2826, 27sylibr 134 . . . . . 6  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. n
( ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
29282eximi 1612 . . . . 5  |-  ( E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. y E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
3029eximi 1611 . . . 4  |-  ( E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. x E. y E. q E. n ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
31 simpl1l 1050 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  x  e.  Q. )
32 simp3rl 1072 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  q  e.  Q. )
3332adantr 276 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  q  e.  Q. )
34 simp3rr 1073 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  ( q  +Q  q )  <Q  P )
3534adantr 276 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( q  +Q  q )  <Q  P )
3631, 33, 353jca 1179 . . . . . . . . 9  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( x  e.  Q.  /\  q  e. 
Q.  /\  ( q  +Q  q )  <Q  P ) )
37 simp3ll 1070 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  <. L ,  U >.  e.  P. )
3837adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  <. L ,  U >.  e.  P. )
39 simpl1r 1051 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  x  e.  L )
40 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  n  e.  N. )
41 simprrl 539 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  1o  <N  n )
42 simprrr 540 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  y  <Q  ( x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) ) )
43 simpl2r 1053 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  y  e.  U )
44 prcunqu 7545 . . . . . . . . . . . . 13  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) )  ->  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4538, 43, 44syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) )  ->  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4642, 45mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U )
47 prarloclem 7561 . . . . . . . . . . 11  |-  ( ( ( <. L ,  U >.  e.  P.  /\  x  e.  L )  /\  (
n  e.  N.  /\  q  e.  Q.  /\  1o  <N  n )  /\  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  ->  E. m  e.  om  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4838, 39, 40, 33, 41, 46, 47syl231anc 1269 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m  e.  om  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
49 df-rex 2478 . . . . . . . . . 10  |-  ( E. m  e.  om  (
( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  <->  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5048, 49sylib 122 . . . . . . . . 9  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m
( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5136, 50jca 306 . . . . . . . 8  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
52 19.42v 1918 . . . . . . . 8  |-  ( E. m ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
5351, 52sylibr 134 . . . . . . 7  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m
( ( x  e. 
Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
54 simprrl 539 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L )
55 eleq1 2256 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( a  e.  L  <->  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L ) )
5655anbi1d 465 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  <-> 
( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5756anbi2d 464 . . . . . . . . . . . . . . 15  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )  <->  ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
5857anbi2d 464 . . . . . . . . . . . . . 14  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
5958ceqsexgv 2889 . . . . . . . . . . . . 13  |-  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  -> 
( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
6059biimprcd 160 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  ->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6154, 60mpd 13 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
62 simprrr 540 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )
63 eleq1 2256 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( b  e.  U  <->  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
6463anbi2d 464 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
a  e.  L  /\  b  e.  U )  <->  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
6564anbi2d 464 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) )  <->  ( m  e.  om  /\  ( a  e.  L  /\  (
x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
6665anbi2d 464 . . . . . . . . . . . . . . 15  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
6766anbi2d 464 . . . . . . . . . . . . . 14  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  <-> 
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6867exbidv 1836 . . . . . . . . . . . . 13  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  <->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6968ceqsexgv 2889 . . . . . . . . . . . 12  |-  ( ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U  ->  ( E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
7069biimprcd 160 . . . . . . . . . . 11  |-  ( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )  -> 
( ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U  ->  E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) ) )
7161, 62, 70sylc 62 . . . . . . . . . 10  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b
( b  =  ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
72 19.42v 1918 . . . . . . . . . . 11  |-  ( E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
7372exbii 1616 . . . . . . . . . 10  |-  ( E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
7471, 73sylibr 134 . . . . . . . . 9  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
75 simprrl 539 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  -> 
a  e.  L )
7675adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  a  e.  L
)
77 simprrr 540 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  -> 
b  e.  U )
7877adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  b  e.  U
)
79 simpl 109 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) ) )
80 simprl2 1045 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  q  e.  Q. )
81 simprl3 1046 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( q  +Q  q )  <Q  P )
8280, 81jca 306 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( q  e. 
Q.  /\  ( q  +Q  q )  <Q  P ) )
83 simprl1 1044 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  x  e.  Q. )
84 simprrl 539 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  m  e.  om )
8583, 84jca 306 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( x  e. 
Q.  /\  m  e.  om ) )
86 prarloclemcalc 7562 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( x  e.  Q.  /\  m  e.  om )
) )  ->  b  <Q  ( a  +Q  P
) )
8779, 82, 85, 86syl12anc 1247 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  b  <Q  (
a  +Q  P ) )
8878, 87jca 306 . . . . . . . . . . . . 13  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( b  e.  U  /\  b  <Q 
( a  +Q  P
) ) )
8976, 88jca 306 . . . . . . . . . . . 12  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9089ancom1s 569 . . . . . . . . . . 11  |-  ( ( ( b  =  ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  a  =  ( x +Q0  ( [
<. m ,  1o >. ] ~Q0 ·Q0 
q ) ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9190anasss 399 . . . . . . . . . 10  |-  ( ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  ->  ( a  e.  L  /\  (
b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
92912eximi 1612 . . . . . . . . 9  |-  ( E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9374, 92syl 14 . . . . . . . 8  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9493exlimiv 1609 . . . . . . 7  |-  ( E. m ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9553, 94syl 14 . . . . . 6  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9695exlimivv 1908 . . . . 5  |-  ( E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9796exlimivv 1908 . . . 4  |-  ( E. x E. y E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9817, 30, 973syl 17 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
99 excom 1675 . . 3  |-  ( E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a E. b
( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
10098, 99sylib 122 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
101 19.42v 1918 . . . . 5  |-  ( E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )  <->  ( a  e.  L  /\  E. b
( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
102 df-rex 2478 . . . . . 6  |-  ( E. b  e.  U  b 
<Q  ( a  +Q  P
)  <->  E. b ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )
103102anbi2i 457 . . . . 5  |-  ( ( a  e.  L  /\  E. b  e.  U  b 
<Q  ( a  +Q  P
) )  <->  ( a  e.  L  /\  E. b
( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
104101, 103bitr4i 187 . . . 4  |-  ( E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )  <->  ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P ) ) )
105104exbii 1616 . . 3  |-  ( E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P
) ) )
106 df-rex 2478 . . 3  |-  ( E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P
)  <->  E. a ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P
) ) )
107105, 106bitr4i 187 . 2  |-  ( E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
108100, 107sylib 122 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   <.cop 3621   class class class wbr 4029   omcom 4622  (class class class)co 5918   1oc1o 6462   2oc2o 6463    +o coa 6466   [cec 6585   N.cnpi 7332    <N clti 7335    ~Q ceq 7339   Q.cnq 7340    +Q cplq 7342    .Q cmq 7343    <Q cltq 7345   ~Q0 ceq0 7346   +Q0 cplq0 7349   ·Q0 cmq0 7350   P.cnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526
This theorem is referenced by:  prarloc2  7564  addlocpr  7596  prmuloc  7626  ltaddpr  7657  ltexprlemloc  7667  ltexprlemrl  7670  ltexprlemru  7672
  Copyright terms: Public domain W3C validator