ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc Unicode version

Theorem prarloc 7323
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance  P, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 7324 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
Distinct variable groups:    L, a, b    P, a, b    U, a, b

Proof of Theorem prarloc
Dummy variables  m  n  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 7297 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  E. x  e.  Q.  x  e.  L )
2 df-rex 2422 . . . . . . 7  |-  ( E. x  e.  Q.  x  e.  L  <->  E. x ( x  e.  Q.  /\  x  e.  L ) )
31, 2sylib 121 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  E. x ( x  e.  Q.  /\  x  e.  L ) )
43adantr 274 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. x
( x  e.  Q.  /\  x  e.  L ) )
5 prmu 7298 . . . . . . 7  |-  ( <. L ,  U >.  e. 
P.  ->  E. y  e.  Q.  y  e.  U )
6 df-rex 2422 . . . . . . 7  |-  ( E. y  e.  Q.  y  e.  U  <->  E. y ( y  e.  Q.  /\  y  e.  U ) )
75, 6sylib 121 . . . . . 6  |-  ( <. L ,  U >.  e. 
P.  ->  E. y ( y  e.  Q.  /\  y  e.  U ) )
87adantr 274 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. y
( y  e.  Q.  /\  y  e.  U ) )
9 subhalfnqq 7234 . . . . . . . . 9  |-  ( P  e.  Q.  ->  E. q  e.  Q.  ( q  +Q  q )  <Q  P )
109adantl 275 . . . . . . . 8  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q  e.  Q.  ( q  +Q  q )  <Q  P )
11 df-rex 2422 . . . . . . . 8  |-  ( E. q  e.  Q.  (
q  +Q  q ) 
<Q  P  <->  E. q ( q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P ) )
1210, 11sylib 121 . . . . . . 7  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )
1312ancli 321 . . . . . 6  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  E. q
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )
14 19.42v 1878 . . . . . 6  |-  ( E. q ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )  <-> 
( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  E. q ( q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P ) ) )
1513, 14sylibr 133 . . . . 5  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. q
( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )
16 eeeanv 1905 . . . . 5  |-  ( E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  <->  ( E. x
( x  e.  Q.  /\  x  e.  L )  /\  E. y ( y  e.  Q.  /\  y  e.  U )  /\  E. q ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) ) )
174, 8, 15, 16syl3anbrc 1165 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) ) )
18 prarloclemarch2 7239 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Q.  /\  x  e.  Q.  /\  q  e.  Q. )  ->  E. n  e.  N.  ( 1o  <N  n  /\  y  <Q  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) ) ) )
19 df-rex 2422 . . . . . . . . . . . . . 14  |-  ( E. n  e.  N.  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) )  <->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
2018, 19sylib 121 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  x  e.  Q.  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
21203com12 1185 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
22213adant1r 1209 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  y  e.  Q.  /\  q  e.  Q. )  ->  E. n ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )
23223adant2r 1211 . . . . . . . . . 10  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  q  e.  Q. )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
24233adant3r 1213 . . . . . . . . 9  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) )  ->  E. n ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )
25243adant3l 1212 . . . . . . . 8  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) )
2625ancli 321 . . . . . . 7  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  ( (
( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) ) )
27 19.42v 1878 . . . . . . 7  |-  ( E. n ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  <->  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  E. n
( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) ) ) ) ) )
2826, 27sylibr 133 . . . . . 6  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. n
( ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
29282eximi 1580 . . . . 5  |-  ( E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. y E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
3029eximi 1579 . . . 4  |-  ( E. x E. y E. q ( ( x  e.  Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  E. x E. y E. q E. n ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e. 
P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) ) )
31 simpl1l 1032 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  x  e.  Q. )
32 simp3rl 1054 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  q  e.  Q. )
3332adantr 274 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  q  e.  Q. )
34 simp3rr 1055 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  ( q  +Q  q )  <Q  P )
3534adantr 274 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( q  +Q  q )  <Q  P )
3631, 33, 353jca 1161 . . . . . . . . 9  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( x  e.  Q.  /\  q  e. 
Q.  /\  ( q  +Q  q )  <Q  P ) )
37 simp3ll 1052 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  x  e.  L )  /\  ( y  e. 
Q.  /\  y  e.  U )  /\  (
( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  (
q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  ->  <. L ,  U >.  e.  P. )
3837adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  <. L ,  U >.  e.  P. )
39 simpl1r 1033 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  x  e.  L )
40 simprl 520 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  n  e.  N. )
41 simprrl 528 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  1o  <N  n )
42 simprrr 529 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  y  <Q  ( x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) ) )
43 simpl2r 1035 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  y  e.  U )
44 prcunqu 7305 . . . . . . . . . . . . 13  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) )  ->  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4538, 43, 44syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) )  ->  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4642, 45mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U )
47 prarloclem 7321 . . . . . . . . . . 11  |-  ( ( ( <. L ,  U >.  e.  P.  /\  x  e.  L )  /\  (
n  e.  N.  /\  q  e.  Q.  /\  1o  <N  n )  /\  (
x  +Q  ( [
<. n ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  ->  E. m  e.  om  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
4838, 39, 40, 33, 41, 46, 47syl231anc 1236 . . . . . . . . . 10  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m  e.  om  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
49 df-rex 2422 . . . . . . . . . 10  |-  ( E. m  e.  om  (
( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  <->  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5048, 49sylib 121 . . . . . . . . 9  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m
( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5136, 50jca 304 . . . . . . . 8  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
52 19.42v 1878 . . . . . . . 8  |-  ( E. m ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  E. m ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
5351, 52sylibr 133 . . . . . . 7  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. m
( ( x  e. 
Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
54 simprrl 528 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L )
55 eleq1 2202 . . . . . . . . . . . . . . . . 17  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( a  e.  L  <->  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L ) )
5655anbi1d 460 . . . . . . . . . . . . . . . 16  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )  <-> 
( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
5756anbi2d 459 . . . . . . . . . . . . . . 15  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )  <->  ( m  e. 
om  /\  ( (
x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
5857anbi2d 459 . . . . . . . . . . . . . 14  |-  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  ->  ( (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
5958ceqsexgv 2814 . . . . . . . . . . . . 13  |-  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  e.  L  -> 
( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
6059biimprcd 159 . . . . . . . . . . . 12  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  ->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6154, 60mpd 13 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
62 simprrr 529 . . . . . . . . . . 11  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  (
x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U )
63 eleq1 2202 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( b  e.  U  <->  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) )
6463anbi2d 459 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
a  e.  L  /\  b  e.  U )  <->  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )
6564anbi2d 459 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) )  <->  ( m  e.  om  /\  ( a  e.  L  /\  (
x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )
6665anbi2d 459 . . . . . . . . . . . . . . 15  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  <->  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) )
6766anbi2d 459 . . . . . . . . . . . . . 14  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( (
a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  <-> 
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6867exbidv 1797 . . . . . . . . . . . . 13  |-  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  ->  ( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  <->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
6968ceqsexgv 2814 . . . . . . . . . . . 12  |-  ( ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U  ->  ( E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) ) ) )
7069biimprcd 159 . . . . . . . . . . 11  |-  ( E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) ) )  -> 
( ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U  ->  E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) ) )
7161, 62, 70sylc 62 . . . . . . . . . 10  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b
( b  =  ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
72 19.42v 1878 . . . . . . . . . . 11  |-  ( E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
7372exbii 1584 . . . . . . . . . 10  |-  ( E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  <->  E. b ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  E. a
( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
7471, 73sylibr 133 . . . . . . . . 9  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) ) )
75 simprrl 528 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  -> 
a  e.  L )
7675adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  a  e.  L
)
77 simprrr 529 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) )  -> 
b  e.  U )
7877adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  b  e.  U
)
79 simpl 108 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) ) )
80 simprl2 1027 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  q  e.  Q. )
81 simprl3 1028 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( q  +Q  q )  <Q  P )
8280, 81jca 304 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( q  e. 
Q.  /\  ( q  +Q  q )  <Q  P ) )
83 simprl1 1026 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  x  e.  Q. )
84 simprrl 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  m  e.  om )
8583, 84jca 304 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( x  e. 
Q.  /\  m  e.  om ) )
86 prarloclemcalc 7322 . . . . . . . . . . . . . . 15  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( x  e.  Q.  /\  m  e.  om )
) )  ->  b  <Q  ( a  +Q  P
) )
8779, 82, 85, 86syl12anc 1214 . . . . . . . . . . . . . 14  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  b  <Q  (
a  +Q  P ) )
8878, 87jca 304 . . . . . . . . . . . . 13  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( b  e.  U  /\  b  <Q 
( a  +Q  P
) ) )
8976, 88jca 304 . . . . . . . . . . . 12  |-  ( ( ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) ) )  /\  (
( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9089ancom1s 558 . . . . . . . . . . 11  |-  ( ( ( b  =  ( x  +Q  ( [
<. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  a  =  ( x +Q0  ( [
<. m ,  1o >. ] ~Q0 ·Q0 
q ) ) )  /\  ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) )  ->  ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9190anasss 396 . . . . . . . . . 10  |-  ( ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  ->  ( a  e.  L  /\  (
b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
92912eximi 1580 . . . . . . . . 9  |-  ( E. b E. a ( b  =  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  /\  ( a  =  ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q )
)  /\  ( (
x  e.  Q.  /\  q  e.  Q.  /\  (
q  +Q  q ) 
<Q  P )  /\  (
m  e.  om  /\  ( a  e.  L  /\  b  e.  U
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9374, 92syl 14 . . . . . . . 8  |-  ( ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q
)  <Q  P )  /\  ( m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9493exlimiv 1577 . . . . . . 7  |-  ( E. m ( ( x  e.  Q.  /\  q  e.  Q.  /\  ( q  +Q  q )  <Q  P )  /\  (
m  e.  om  /\  ( ( x +Q0  ( [ <. m ,  1o >. ] ~Q0 ·Q0  q ) )  e.  L  /\  ( x  +Q  ( [ <. ( m  +o  2o ) ,  1o >. ]  ~Q  .Q  q ) )  e.  U ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9553, 94syl 14 . . . . . 6  |-  ( ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9695exlimivv 1868 . . . . 5  |-  ( E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9796exlimivv 1868 . . . 4  |-  ( E. x E. y E. q E. n ( ( ( x  e. 
Q.  /\  x  e.  L )  /\  (
y  e.  Q.  /\  y  e.  U )  /\  ( ( <. L ,  U >.  e.  P.  /\  P  e.  Q. )  /\  ( q  e.  Q.  /\  ( q  +Q  q
)  <Q  P ) ) )  /\  ( n  e.  N.  /\  ( 1o  <N  n  /\  y  <Q  ( x  +Q  ( [ <. n ,  1o >. ]  ~Q  .Q  q
) ) ) ) )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
9817, 30, 973syl 17 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
99 excom 1642 . . 3  |-  ( E. b E. a ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a E. b
( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
10098, 99sylib 121 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) ) )
101 19.42v 1878 . . . . 5  |-  ( E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )  <->  ( a  e.  L  /\  E. b
( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
102 df-rex 2422 . . . . . 6  |-  ( E. b  e.  U  b 
<Q  ( a  +Q  P
)  <->  E. b ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )
103102anbi2i 452 . . . . 5  |-  ( ( a  e.  L  /\  E. b  e.  U  b 
<Q  ( a  +Q  P
) )  <->  ( a  e.  L  /\  E. b
( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) ) )
104101, 103bitr4i 186 . . . 4  |-  ( E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P
) ) )  <->  ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P ) ) )
105104exbii 1584 . . 3  |-  ( E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P
) ) )
106 df-rex 2422 . . 3  |-  ( E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P
)  <->  E. a ( a  e.  L  /\  E. b  e.  U  b  <Q  ( a  +Q  P
) ) )
107105, 106bitr4i 186 . 2  |-  ( E. a E. b ( a  e.  L  /\  ( b  e.  U  /\  b  <Q  ( a  +Q  P ) ) )  <->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
108100, 107sylib 121 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  P  e.  Q. )  ->  E. a  e.  L  E. b  e.  U  b  <Q  ( a  +Q  P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   <.cop 3530   class class class wbr 3929   omcom 4504  (class class class)co 5774   1oc1o 6306   2oc2o 6307    +o coa 6310   [cec 6427   N.cnpi 7092    <N clti 7095    ~Q ceq 7099   Q.cnq 7100    +Q cplq 7102    .Q cmq 7103    <Q cltq 7105   ~Q0 ceq0 7106   +Q0 cplq0 7109   ·Q0 cmq0 7110   P.cnp 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7124  df-pli 7125  df-mi 7126  df-lti 7127  df-plpq 7164  df-mpq 7165  df-enq 7167  df-nqqs 7168  df-plqqs 7169  df-mqqs 7170  df-1nqqs 7171  df-rq 7172  df-ltnqqs 7173  df-enq0 7244  df-nq0 7245  df-0nq0 7246  df-plq0 7247  df-mq0 7248  df-inp 7286
This theorem is referenced by:  prarloc2  7324  addlocpr  7356  prmuloc  7386  ltaddpr  7417  ltexprlemloc  7427  ltexprlemrl  7430  ltexprlemru  7432
  Copyright terms: Public domain W3C validator