ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leltadd Unicode version

Theorem leltadd 7988
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
leltadd  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( A  +  B )  <  ( C  +  D )
) )

Proof of Theorem leltadd
StepHypRef Expression
1 ltleadd 7987 . . . . 5  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( D  e.  RR  /\  C  e.  RR ) )  -> 
( ( B  < 
D  /\  A  <_  C )  ->  ( B  +  A )  <  ( D  +  C )
) )
21ancomsd 266 . . . 4  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( D  e.  RR  /\  C  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
32ancom2s 534 . . 3  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
43ancom1s 537 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
5 recn 7538 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
6 recn 7538 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
7 addcom 7682 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
85, 6, 7syl2an 284 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( B  +  A ) )
9 recn 7538 . . . 4  |-  ( C  e.  RR  ->  C  e.  CC )
10 recn 7538 . . . 4  |-  ( D  e.  RR  ->  D  e.  CC )
11 addcom 7682 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  =  ( D  +  C ) )
129, 10, 11syl2an 284 . . 3  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  +  D
)  =  ( D  +  C ) )
138, 12breqan12d 3868 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  B )  <  ( C  +  D )  <->  ( B  +  A )  <  ( D  +  C ) ) )
144, 13sylibrd 168 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( A  +  B )  <  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439   class class class wbr 3853  (class class class)co 5668   CCcc 7411   RRcr 7412    + caddc 7416    < clt 7585    <_ cle 7586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-i2m1 7513  ax-0id 7516  ax-rnegex 7517  ax-pre-ltwlin 7521  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-opab 3908  df-xp 4460  df-cnv 4462  df-iota 4995  df-fv 5038  df-ov 5671  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591
This theorem is referenced by:  addgegt0  7990  leltaddd  8106
  Copyright terms: Public domain W3C validator