ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leltadd Unicode version

Theorem leltadd 8345
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
leltadd  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( A  +  B )  <  ( C  +  D )
) )

Proof of Theorem leltadd
StepHypRef Expression
1 ltleadd 8344 . . . . 5  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( D  e.  RR  /\  C  e.  RR ) )  -> 
( ( B  < 
D  /\  A  <_  C )  ->  ( B  +  A )  <  ( D  +  C )
) )
21ancomsd 267 . . . 4  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( D  e.  RR  /\  C  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
32ancom2s 556 . . 3  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
43ancom1s 559 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
5 recn 7886 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
6 recn 7886 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
7 addcom 8035 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
85, 6, 7syl2an 287 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( B  +  A ) )
9 recn 7886 . . . 4  |-  ( C  e.  RR  ->  C  e.  CC )
10 recn 7886 . . . 4  |-  ( D  e.  RR  ->  D  e.  CC )
11 addcom 8035 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  =  ( D  +  C ) )
129, 10, 11syl2an 287 . . 3  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  +  D
)  =  ( D  +  C ) )
138, 12breqan12d 3998 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  B )  <  ( C  +  D )  <->  ( B  +  A )  <  ( D  +  C ) ) )
144, 13sylibrd 168 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( A  +  B )  <  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752    + caddc 7756    < clt 7933    <_ cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-pre-ltwlin 7866  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-iota 5153  df-fv 5196  df-ov 5845  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  addgegt0  8347  leltaddd  8464
  Copyright terms: Public domain W3C validator