ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leltadd Unicode version

Theorem leltadd 8407
Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008.)
Assertion
Ref Expression
leltadd  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( A  +  B )  <  ( C  +  D )
) )

Proof of Theorem leltadd
StepHypRef Expression
1 ltleadd 8406 . . . . 5  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( D  e.  RR  /\  C  e.  RR ) )  -> 
( ( B  < 
D  /\  A  <_  C )  ->  ( B  +  A )  <  ( D  +  C )
) )
21ancomsd 269 . . . 4  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( D  e.  RR  /\  C  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
32ancom2s 566 . . 3  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
43ancom1s 569 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( B  +  A )  <  ( D  +  C )
) )
5 recn 7947 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
6 recn 7947 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
7 addcom 8097 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
85, 6, 7syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( B  +  A ) )
9 recn 7947 . . . 4  |-  ( C  e.  RR  ->  C  e.  CC )
10 recn 7947 . . . 4  |-  ( D  e.  RR  ->  D  e.  CC )
11 addcom 8097 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  =  ( D  +  C ) )
129, 10, 11syl2an 289 . . 3  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  +  D
)  =  ( D  +  C ) )
138, 12breqan12d 4021 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  +  B )  <  ( C  +  D )  <->  ( B  +  A )  <  ( D  +  C ) ) )
144, 13sylibrd 169 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <  D
)  ->  ( A  +  B )  <  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   CCcc 7812   RRcr 7813    + caddc 7817    < clt 7995    <_ cle 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0id 7922  ax-rnegex 7923  ax-pre-ltwlin 7927  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-iota 5180  df-fv 5226  df-ov 5881  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001
This theorem is referenced by:  addgegt0  8409  leltaddd  8526
  Copyright terms: Public domain W3C validator