ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2 Unicode version

Theorem lgsdir2 15274
Description: The Legendre symbol is completely multiplicative at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cnd 8019 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  0  e.  CC )
2 1cnd 8042 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  CC )
3 neg1cn 9095 . . . . . . . . . 10  |-  -u 1  e.  CC
43a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> 
-u 1  e.  CC )
5 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
6 8nn 9158 . . . . . . . . . . . . . . 15  |-  8  e.  NN
76a1i 9 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  8  e.  NN )
85, 7zmodcld 10437 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  mod  8
)  e.  NN0 )
98nn0zd 9446 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  mod  8
)  e.  ZZ )
10 1zzd 9353 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  ZZ )
11 zdceq 9401 . . . . . . . . . . . 12  |-  ( ( ( B  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( B  mod  8 )  =  1 )
129, 10, 11syl2anc 411 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( B  mod  8 )  =  1 )
13 7nn 9157 . . . . . . . . . . . . . 14  |-  7  e.  NN
1413nnzi 9347 . . . . . . . . . . . . 13  |-  7  e.  ZZ
1514a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  7  e.  ZZ )
16 zdceq 9401 . . . . . . . . . . . 12  |-  ( ( ( B  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( B  mod  8 )  =  7 )
179, 15, 16syl2anc 411 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( B  mod  8 )  =  7 )
18 dcor 937 . . . . . . . . . . 11  |-  (DECID  ( B  mod  8 )  =  1  ->  (DECID  ( B  mod  8 )  =  7  -> DECID 
( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
1912, 17, 18sylc 62 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( ( B  mod  8
)  =  1  \/  ( B  mod  8
)  =  7 ) )
20 elprg 3642 . . . . . . . . . . . 12  |-  ( ( B  mod  8 )  e.  NN0  ->  ( ( B  mod  8 )  e.  { 1 ,  7 }  <->  ( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
218, 20syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( B  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
2221dcbid 839 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  (DECID  ( B  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
2319, 22mpbird 167 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( B  mod  8 )  e.  { 1 ,  7 } )
242, 4, 23ifcldcd 3597 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 )  e.  CC )
2524adantr 276 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  CC )
26 2nn 9152 . . . . . . . . 9  |-  2  e.  NN
2726a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  2  e.  NN )
28 simplr 528 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  B  e.  ZZ )
29 dvdsdc 11963 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  B  e.  ZZ )  -> DECID  2 
||  B )
3027, 28, 29syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  -> DECID  2  ||  B )
311, 25, 30ifcldcd 3597 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  CC )
3231mul02d 8418 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( 0  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  0 )
33 iftrue 3566 . . . . . . 7  |-  ( 2 
||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
3433adantl 277 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
3534oveq1d 5937 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( 0  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ) )
36 2z 9354 . . . . . . . 8  |-  2  e.  ZZ
37 dvdsmultr1 11996 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  A  ->  2 
||  ( A  x.  B ) ) )
3836, 37mp3an1 1335 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  A  ->  2  ||  ( A  x.  B ) ) )
3938imp 124 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  2  ||  ( A  x.  B
) )
4039iftrued 3568 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
4132, 35, 403eqtr4d 2239 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
42 0cnd 8019 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  0  e.  CC )
43 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
4443, 7zmodcld 10437 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  8
)  e.  NN0 )
4544nn0zd 9446 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  8
)  e.  ZZ )
46 zdceq 9401 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
4745, 10, 46syl2anc 411 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
48 zdceq 9401 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
4945, 15, 48syl2anc 411 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
50 dcor 937 . . . . . . . . . . 11  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5147, 49, 50sylc 62 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( ( A  mod  8
)  =  1  \/  ( A  mod  8
)  =  7 ) )
52 elprg 3642 . . . . . . . . . . . 12  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5344, 52syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5453dcbid 839 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  (DECID  ( A  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5551, 54mpbird 167 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( A  mod  8 )  e.  { 1 ,  7 } )
562, 4, 55ifcldcd 3597 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 )  e.  CC )
5726a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2  e.  NN )
58 dvdsdc 11963 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
5957, 43, 58syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  2 
||  A )
6042, 56, 59ifcldcd 3597 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  CC )
6160mul01d 8419 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  0 )  =  0 )
6261adantr 276 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  0 )  =  0 )
63 iftrue 3566 . . . . . . 7  |-  ( 2 
||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
6463adantl 277 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
6564oveq2d 5938 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  x.  0 ) )
66 dvdsmultr2 11998 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  B  ->  2 
||  ( A  x.  B ) ) )
6736, 66mp3an1 1335 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  ->  2  ||  ( A  x.  B ) ) )
6867imp 124 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  2  ||  ( A  x.  B
) )
6968iftrued 3568 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
7062, 65, 693eqtr4d 2239 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
7141, 70jaodan 798 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( 2  ||  A  \/  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
72 ioran 753 . . . 4  |-  ( -.  ( 2  ||  A  \/  2  ||  B )  <-> 
( -.  2  ||  A  /\  -.  2  ||  B ) )
7324ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  CC )
7473mulid2d 8045 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
1  x.  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
75 iftrue 3566 . . . . . . . . . 10  |-  ( ( A  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
7675adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
7776oveq1d 5937 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( 1  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
78 lgsdir2lem4 15272 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
7978adantlr 477 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
8079ifbid 3582 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
8174, 77, 803eqtr4d 2239 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
8256mulridd 8043 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  1 )  =  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
8382ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  1 )  =  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )
84 iftrue 3566 . . . . . . . . . 10  |-  ( ( B  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
8584adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
8685oveq2d 5938 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  1 ) )
87 zcn 9331 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  CC )
88 zcn 9331 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  B  e.  CC )
89 mulcom 8008 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
9087, 88, 89syl2an 289 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
9190ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  x.  B )  =  ( B  x.  A ) )
9291oveq1d 5937 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( A  x.  B
)  mod  8 )  =  ( ( B  x.  A )  mod  8 ) )
9392eleq1d 2265 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( ( B  x.  A )  mod  8 )  e.  {
1 ,  7 } ) )
94 lgsdir2lem4 15272 . . . . . . . . . . . 12  |-  ( ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9594ancom1s 569 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9695adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( B  x.  A )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9793, 96bitrd 188 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9897ifbid 3582 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
9983, 86, 983eqtr4d 2239 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
10081, 99jaodan 798 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( ( A  mod  8 )  e.  { 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 1 ,  7 } ) )  -> 
( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )  =  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )
101 ioran 753 . . . . . . 7  |-  ( -.  ( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } )  <->  ( -.  ( A  mod  8 )  e. 
{ 1 ,  7 }  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } ) )
102 neg1mulneg1e1 9203 . . . . . . . 8  |-  ( -u
1  x.  -u 1
)  =  1
103 iffalse 3569 . . . . . . . . . 10  |-  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
104 iffalse 3569 . . . . . . . . . 10  |-  ( -.  ( B  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
105103, 104oveqan12d 5941 . . . . . . . . 9  |-  ( ( -.  ( A  mod  8 )  e.  {
1 ,  7 }  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
106105adantl 277 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
107 lgsdir2lem3 15271 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
108107ad2ant2r 509 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
109 elun 3304 . . . . . . . . . . . . 13  |-  ( ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( A  mod  8 )  e. 
{ 1 ,  7 }  \/  ( A  mod  8 )  e. 
{ 3 ,  5 } ) )
110108, 109sylib 122 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( A  mod  8 )  e.  {
3 ,  5 } ) )
111110orcanai 929 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  mod  8 )  e. 
{ 3 ,  5 } )
112 lgsdir2lem3 15271 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  -.  2  ||  B )  ->  ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
113112ad2ant2l 508 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( B  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
114 elun 3304 . . . . . . . . . . . . 13  |-  ( ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( B  mod  8 )  e. 
{ 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
115113, 114sylib 122 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( B  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
3 ,  5 } ) )
116115orcanai 929 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( B  mod  8 )  e. 
{ 3 ,  5 } )
117111, 116anim12dan 600 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
118 lgsdir2lem5 15273 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
119118adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( ( A  mod  8 )  e.  { 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
120117, 119syldan 282 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } )
121120iftrued 3568 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  if (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  =  1 )
122102, 106, 1213eqtr4a 2255 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
123101, 122sylan2b 287 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  (
( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
124 dcor 937 . . . . . . . . 9  |-  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  ->  (DECID  ( B  mod  8 )  e.  {
1 ,  7 }  -> DECID 
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } ) ) )
12555, 23, 124sylc 62 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( ( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) )
126125adantr 276 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> DECID  (
( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) )
127 exmiddc 837 . . . . . . 7  |-  (DECID  ( ( A  mod  8 )  e.  { 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } )  \/  -.  (
( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) ) )
128126, 127syl 14 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( ( A  mod  8 )  e. 
{ 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 1 ,  7 } )  \/  -.  ( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } ) ) )
129100, 123, 128mpjaodan 799 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )  =  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )
130 iffalse 3569 . . . . . . 7  |-  ( -.  2  ||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
131 iffalse 3569 . . . . . . 7  |-  ( -.  2  ||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
132130, 131oveqan12d 5941 . . . . . 6  |-  ( ( -.  2  ||  A  /\  -.  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  x.  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
133132adantl 277 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
134 2prm 12295 . . . . . . . . . 10  |-  2  e.  Prime
135 euclemma 12314 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  ( A  x.  B )  <->  ( 2 
||  A  \/  2 
||  B ) ) )
136134, 135mp3an1 1335 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  ( A  x.  B )  <->  ( 2  ||  A  \/  2  ||  B ) ) )
137136notbid 668 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  2  ||  ( A  x.  B
)  <->  -.  ( 2 
||  A  \/  2 
||  B ) ) )
138137biimpar 297 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( 2 
||  A  \/  2 
||  B ) )  ->  -.  2  ||  ( A  x.  B
) )
13972, 138sylan2br 288 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  -.  2  ||  ( A  x.  B ) )
140 iffalse 3569 . . . . . 6  |-  ( -.  2  ||  ( A  x.  B )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
141139, 140syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
142129, 133, 1413eqtr4d 2239 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
14372, 142sylan2b 287 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( 2 
||  A  \/  2 
||  B ) )  ->  ( if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
14457, 5, 29syl2anc 411 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  2 
||  B )
145 dcor 937 . . . . 5  |-  (DECID  2  ||  A  ->  (DECID  2  ||  B  -> DECID  (
2  ||  A  \/  2  ||  B ) ) )
14659, 144, 145sylc 62 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( 2  ||  A  \/  2  ||  B ) )
147 exmiddc 837 . . . 4  |-  (DECID  ( 2 
||  A  \/  2 
||  B )  -> 
( ( 2  ||  A  \/  2  ||  B )  \/  -.  ( 2  ||  A  \/  2  ||  B ) ) )
148146, 147syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  ||  A  \/  2  ||  B )  \/  -.  ( 2  ||  A  \/  2  ||  B ) ) )
14971, 143, 148mpjaodan 799 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
150 lgs2 15258 . . 3  |-  ( A  e.  ZZ  ->  ( A  /L 2 )  =  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
151 lgs2 15258 . . 3  |-  ( B  e.  ZZ  ->  ( B  /L 2 )  =  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
152150, 151oveqan12d 5941 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  /L 2 )  x.  ( B  /L 2 ) )  =  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ) )
153 zmulcl 9379 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
154 lgs2 15258 . . 3  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  /L 2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
155153, 154syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
156149, 152, 1553eqtr4rd 2240 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167    u. cun 3155   ifcif 3561   {cpr 3623   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    x. cmul 7884   -ucneg 8198   NNcn 8990   2c2 9041   3c3 9042   5c5 9044   7c7 9046   8c8 9047   NN0cn0 9249   ZZcz 9326    mod cmo 10414    || cdvds 11952   Primecprime 12275    /Lclgs 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379  df-pc 12454  df-lgs 15239
This theorem is referenced by:  lgsdirprm  15275
  Copyright terms: Public domain W3C validator