ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir2 Unicode version

Theorem lgsdir2 13534
Description: The Legendre symbol is completely multiplicative at  2. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )

Proof of Theorem lgsdir2
StepHypRef Expression
1 0cnd 7888 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  0  e.  CC )
2 1cnd 7911 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  CC )
3 neg1cn 8958 . . . . . . . . . 10  |-  -u 1  e.  CC
43a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> 
-u 1  e.  CC )
5 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  ZZ )
6 8nn 9020 . . . . . . . . . . . . . . 15  |-  8  e.  NN
76a1i 9 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  8  e.  NN )
85, 7zmodcld 10276 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  mod  8
)  e.  NN0 )
98nn0zd 9307 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  mod  8
)  e.  ZZ )
10 1zzd 9214 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  ZZ )
11 zdceq 9262 . . . . . . . . . . . 12  |-  ( ( ( B  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( B  mod  8 )  =  1 )
129, 10, 11syl2anc 409 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( B  mod  8 )  =  1 )
13 7nn 9019 . . . . . . . . . . . . . 14  |-  7  e.  NN
1413nnzi 9208 . . . . . . . . . . . . 13  |-  7  e.  ZZ
1514a1i 9 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  7  e.  ZZ )
16 zdceq 9262 . . . . . . . . . . . 12  |-  ( ( ( B  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( B  mod  8 )  =  7 )
179, 15, 16syl2anc 409 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( B  mod  8 )  =  7 )
18 dcor 925 . . . . . . . . . . 11  |-  (DECID  ( B  mod  8 )  =  1  ->  (DECID  ( B  mod  8 )  =  7  -> DECID 
( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
1912, 17, 18sylc 62 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( ( B  mod  8
)  =  1  \/  ( B  mod  8
)  =  7 ) )
20 elprg 3595 . . . . . . . . . . . 12  |-  ( ( B  mod  8 )  e.  NN0  ->  ( ( B  mod  8 )  e.  { 1 ,  7 }  <->  ( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
218, 20syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( B  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
2221dcbid 828 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  (DECID  ( B  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( B  mod  8 )  =  1  \/  ( B  mod  8 )  =  7 ) ) )
2319, 22mpbird 166 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( B  mod  8 )  e.  { 1 ,  7 } )
242, 4, 23ifcldcd 3554 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 )  e.  CC )
2524adantr 274 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  e.  CC )
26 2nn 9014 . . . . . . . . 9  |-  2  e.  NN
2726a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  2  e.  NN )
28 simplr 520 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  B  e.  ZZ )
29 dvdsdc 11734 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  B  e.  ZZ )  -> DECID  2 
||  B )
3027, 28, 29syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  -> DECID  2  ||  B )
311, 25, 30ifcldcd 3554 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  e.  CC )
3231mul02d 8286 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( 0  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  0 )
33 iftrue 3524 . . . . . . 7  |-  ( 2 
||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
3433adantl 275 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
3534oveq1d 5856 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( 0  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ) )
36 2z 9215 . . . . . . . 8  |-  2  e.  ZZ
37 dvdsmultr1 11767 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  A  ->  2 
||  ( A  x.  B ) ) )
3836, 37mp3an1 1314 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  A  ->  2  ||  ( A  x.  B ) ) )
3938imp 123 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  2  ||  ( A  x.  B
) )
4039iftrued 3526 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
4132, 35, 403eqtr4d 2208 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  A
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
42 0cnd 7888 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  0  e.  CC )
43 simpl 108 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
4443, 7zmodcld 10276 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  8
)  e.  NN0 )
4544nn0zd 9307 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  mod  8
)  e.  ZZ )
46 zdceq 9262 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
4745, 10, 46syl2anc 409 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
48 zdceq 9262 . . . . . . . . . . . 12  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
4945, 15, 48syl2anc 409 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
50 dcor 925 . . . . . . . . . . 11  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5147, 49, 50sylc 62 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( ( A  mod  8
)  =  1  \/  ( A  mod  8
)  =  7 ) )
52 elprg 3595 . . . . . . . . . . . 12  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5344, 52syl 14 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  8 )  e.  {
1 ,  7 }  <-> 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5453dcbid 828 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  (DECID  ( A  mod  8
)  e.  { 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
5551, 54mpbird 166 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( A  mod  8 )  e.  { 1 ,  7 } )
562, 4, 55ifcldcd 3554 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 )  e.  CC )
5726a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2  e.  NN )
58 dvdsdc 11734 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
5957, 43, 58syl2anc 409 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  2 
||  A )
6042, 56, 59ifcldcd 3554 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  CC )
6160mul01d 8287 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  0 )  =  0 )
6261adantr 274 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  0 )  =  0 )
63 iftrue 3524 . . . . . . 7  |-  ( 2 
||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  0 )
6463adantl 275 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  B , 
0 ,  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  0 )
6564oveq2d 5857 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  x.  0 ) )
66 dvdsmultr2 11769 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  B  ->  2 
||  ( A  x.  B ) ) )
6736, 66mp3an1 1314 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  B  ->  2  ||  ( A  x.  B ) ) )
6867imp 123 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  2  ||  ( A  x.  B
) )
6968iftrued 3526 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  if (
2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  =  0 )
7062, 65, 693eqtr4d 2208 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
7141, 70jaodan 787 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( 2  ||  A  \/  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
72 ioran 742 . . . 4  |-  ( -.  ( 2  ||  A  \/  2  ||  B )  <-> 
( -.  2  ||  A  /\  -.  2  ||  B ) )
7324ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  CC )
7473mulid2d 7913 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
1  x.  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  =  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
75 iftrue 3524 . . . . . . . . . 10  |-  ( ( A  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
7675adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
7776oveq1d 5856 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( 1  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
78 lgsdir2lem4 13532 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( A  x.  B
)  mod  8 )  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
7978adantlr 469 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( B  mod  8 )  e.  {
1 ,  7 } ) )
8079ifbid 3540 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
8174, 77, 803eqtr4d 2208 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
8256mulid1d 7912 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  1 )  =  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
8382ad2antrr 480 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  1 )  =  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )
84 iftrue 3524 . . . . . . . . . 10  |-  ( ( B  mod  8 )  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
8584adantl 275 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  1 )
8685oveq2d 5857 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  1 ) )
87 zcn 9192 . . . . . . . . . . . . . 14  |-  ( A  e.  ZZ  ->  A  e.  CC )
88 zcn 9192 . . . . . . . . . . . . . 14  |-  ( B  e.  ZZ  ->  B  e.  CC )
89 mulcom 7878 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
9087, 88, 89syl2an 287 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
9190ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  x.  B )  =  ( B  x.  A ) )
9291oveq1d 5856 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( A  x.  B
)  mod  8 )  =  ( ( B  x.  A )  mod  8 ) )
9392eleq1d 2234 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( ( B  x.  A )  mod  8 )  e.  {
1 ,  7 } ) )
94 lgsdir2lem4 13532 . . . . . . . . . . . 12  |-  ( ( ( B  e.  ZZ  /\  A  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9594ancom1s 559 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( B  mod  8 )  e.  {
1 ,  7 } )  ->  ( (
( B  x.  A
)  mod  8 )  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9695adantlr 469 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( B  x.  A )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9793, 96bitrd 187 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 }  <->  ( A  mod  8 )  e.  {
1 ,  7 } ) )
9897ifbid 3540 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )
9983, 86, 983eqtr4d 2208 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
10081, 99jaodan 787 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( ( A  mod  8 )  e.  { 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 1 ,  7 } ) )  -> 
( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )  =  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )
101 ioran 742 . . . . . . 7  |-  ( -.  ( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } )  <->  ( -.  ( A  mod  8 )  e. 
{ 1 ,  7 }  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } ) )
102 neg1mulneg1e1 9065 . . . . . . . 8  |-  ( -u
1  x.  -u 1
)  =  1
103 iffalse 3527 . . . . . . . . . 10  |-  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
104 iffalse 3527 . . . . . . . . . 10  |-  ( -.  ( B  mod  8
)  e.  { 1 ,  7 }  ->  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  =  -u
1 )
105103, 104oveqan12d 5860 . . . . . . . . 9  |-  ( ( -.  ( A  mod  8 )  e.  {
1 ,  7 }  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
106105adantl 275 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  ( -u 1  x.  -u 1 ) )
107 lgsdir2lem3 13531 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
108107ad2ant2r 501 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( A  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
109 elun 3262 . . . . . . . . . . . . 13  |-  ( ( A  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( A  mod  8 )  e. 
{ 1 ,  7 }  \/  ( A  mod  8 )  e. 
{ 3 ,  5 } ) )
110108, 109sylib 121 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( A  mod  8 )  e.  {
3 ,  5 } ) )
111110orcanai 918 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( A  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( A  mod  8 )  e. 
{ 3 ,  5 } )
112 lgsdir2lem3 13531 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ZZ  /\  -.  2  ||  B )  ->  ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
113112ad2ant2l 500 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( B  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
114 elun 3262 . . . . . . . . . . . . 13  |-  ( ( B  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( ( B  mod  8 )  e. 
{ 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
115113, 114sylib 121 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( B  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
3 ,  5 } ) )
116115orcanai 918 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  ( B  mod  8 )  e. 
{ 3 ,  5 } )
117111, 116anim12dan 590 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )
118 lgsdir2lem5 13533 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
119118adantlr 469 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( ( A  mod  8 )  e.  { 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
120117, 119syldan 280 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } )
121120iftrued 3526 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  if (
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  =  1 )
122102, 106, 1213eqtr4a 2224 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  ( -.  ( A  mod  8
)  e.  { 1 ,  7 }  /\  -.  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
123101, 122sylan2b 285 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  /\  -.  (
( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) )  ->  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
124 dcor 925 . . . . . . . . 9  |-  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  ->  (DECID  ( B  mod  8 )  e.  {
1 ,  7 }  -> DECID 
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } ) ) )
12555, 23, 124sylc 62 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( ( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) )
126125adantr 274 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> DECID  (
( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) )
127 exmiddc 826 . . . . . . 7  |-  (DECID  ( ( A  mod  8 )  e.  { 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 1 ,  7 } )  ->  (
( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } )  \/  -.  (
( A  mod  8
)  e.  { 1 ,  7 }  \/  ( B  mod  8
)  e.  { 1 ,  7 } ) ) )
128126, 127syl 14 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( ( ( A  mod  8 )  e. 
{ 1 ,  7 }  \/  ( B  mod  8 )  e. 
{ 1 ,  7 } )  \/  -.  ( ( A  mod  8 )  e.  {
1 ,  7 }  \/  ( B  mod  8 )  e.  {
1 ,  7 } ) ) )
129100, 123, 128mpjaodan 788 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 )  x.  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )  =  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )
130 iffalse 3527 . . . . . . 7  |-  ( -.  2  ||  A  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( A  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
131 iffalse 3527 . . . . . . 7  |-  ( -.  2  ||  B  ->  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( B  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
132130, 131oveqan12d 5860 . . . . . 6  |-  ( ( -.  2  ||  A  /\  -.  2  ||  B
)  ->  ( if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  ( if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
)  x.  if ( ( B  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
133132adantl 275 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  ( if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  x.  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
134 2prm 12055 . . . . . . . . . 10  |-  2  e.  Prime
135 euclemma 12074 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
2  ||  ( A  x.  B )  <->  ( 2 
||  A  \/  2 
||  B ) ) )
136134, 135mp3an1 1314 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  ||  ( A  x.  B )  <->  ( 2  ||  A  \/  2  ||  B ) ) )
137136notbid 657 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  2  ||  ( A  x.  B
)  <->  -.  ( 2 
||  A  \/  2 
||  B ) ) )
138137biimpar 295 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( 2 
||  A  \/  2 
||  B ) )  ->  -.  2  ||  ( A  x.  B
) )
13972, 138sylan2br 286 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  -.  2  ||  ( A  x.  B ) )
140 iffalse 3527 . . . . . 6  |-  ( -.  2  ||  ( A  x.  B )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
141139, 140syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  ->  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  =  if ( ( ( A  x.  B )  mod  8 )  e. 
{ 1 ,  7 } ,  1 , 
-u 1 ) )
142129, 133, 1413eqtr4d 2208 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( -.  2  ||  A  /\  -.  2  ||  B ) )  -> 
( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
14372, 142sylan2b 285 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( 2 
||  A  \/  2 
||  B ) )  ->  ( if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) )  x.  if ( 2  ||  B ,  0 ,  if ( ( B  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )  =  if ( 2 
||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B
)  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
14457, 5, 29syl2anc 409 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  2 
||  B )
145 dcor 925 . . . . 5  |-  (DECID  2  ||  A  ->  (DECID  2  ||  B  -> DECID  (
2  ||  A  \/  2  ||  B ) ) )
14659, 144, 145sylc 62 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( 2  ||  A  \/  2  ||  B ) )
147 exmiddc 826 . . . 4  |-  (DECID  ( 2 
||  A  \/  2 
||  B )  -> 
( ( 2  ||  A  \/  2  ||  B )  \/  -.  ( 2  ||  A  \/  2  ||  B ) ) )
148146, 147syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  ||  A  \/  2  ||  B )  \/  -.  ( 2  ||  A  \/  2  ||  B ) ) )
14971, 143, 148mpjaodan 788 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
150 lgs2 13518 . . 3  |-  ( A  e.  ZZ  ->  ( A  /L 2 )  =  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
151 lgs2 13518 . . 3  |-  ( B  e.  ZZ  ->  ( B  /L 2 )  =  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) )
152150, 151oveqan12d 5860 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  /L 2 )  x.  ( B  /L 2 ) )  =  ( if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) )  x.  if ( 2 
||  B ,  0 ,  if ( ( B  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ) )
153 zmulcl 9240 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  x.  B
)  e.  ZZ )
154 lgs2 13518 . . 3  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  /L 2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) )
155153, 154syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  if ( 2  ||  ( A  x.  B ) ,  0 ,  if ( ( ( A  x.  B )  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) )
156149, 152, 1553eqtr4rd 2209 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  x.  B )  /L 2 )  =  ( ( A  /L 2 )  x.  ( B  /L 2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136    u. cun 3113   ifcif 3519   {cpr 3576   class class class wbr 3981  (class class class)co 5841   CCcc 7747   0cc0 7749   1c1 7750    x. cmul 7754   -ucneg 8066   NNcn 8853   2c2 8904   3c3 8905   5c5 8907   7c7 8909   8c8 8910   NN0cn0 9110   ZZcz 9187    mod cmo 10253    || cdvds 11723   Primecprime 12035    /Lclgs 13498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-isom 5196  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-irdg 6334  df-frec 6355  df-1o 6380  df-2o 6381  df-oadd 6384  df-er 6497  df-en 6703  df-dom 6704  df-fin 6705  df-sup 6945  df-inf 6946  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-5 8915  df-6 8916  df-7 8917  df-8 8918  df-9 8919  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-ihash 10685  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-clim 11216  df-proddc 11488  df-dvds 11724  df-gcd 11872  df-prm 12036  df-phi 12139  df-pc 12213  df-lgs 13499
This theorem is referenced by:  lgsdirprm  13535
  Copyright terms: Public domain W3C validator