ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inelr Unicode version

Theorem inelr 8309
Description: The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
Assertion
Ref Expression
inelr  |-  -.  _i  e.  RR

Proof of Theorem inelr
StepHypRef Expression
1 ine0 8120 . . 3  |-  _i  =/=  0
21neii 2285 . 2  |-  -.  _i  =  0
3 0lt1 7853 . . . . . 6  |-  0  <  1
4 0re 7730 . . . . . . 7  |-  0  e.  RR
5 1re 7729 . . . . . . 7  |-  1  e.  RR
64, 5ltnsymi 7827 . . . . . 6  |-  ( 0  <  1  ->  -.  1  <  0 )
73, 6ax-mp 5 . . . . 5  |-  -.  1  <  0
8 ixi 8308 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
95renegcli 7988 . . . . . . . 8  |-  -u 1  e.  RR
108, 9eqeltri 2188 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
114, 10, 5ltadd1i 8228 . . . . . 6  |-  ( 0  <  ( _i  x.  _i )  <->  ( 0  +  1 )  <  (
( _i  x.  _i )  +  1 ) )
12 ax-1cn 7677 . . . . . . . 8  |-  1  e.  CC
1312addid2i 7869 . . . . . . 7  |-  ( 0  +  1 )  =  1
14 ax-i2m1 7689 . . . . . . 7  |-  ( ( _i  x.  _i )  +  1 )  =  0
1513, 14breq12i 3906 . . . . . 6  |-  ( ( 0  +  1 )  <  ( ( _i  x.  _i )  +  1 )  <->  1  <  0 )
1611, 15bitri 183 . . . . 5  |-  ( 0  <  ( _i  x.  _i )  <->  1  <  0
)
177, 16mtbir 643 . . . 4  |-  -.  0  <  ( _i  x.  _i )
18 mullt0 8206 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  _i  <  0 )  /\  ( _i  e.  RR  /\  _i  <  0
) )  ->  0  <  ( _i  x.  _i ) )
1918anidms 392 . . . . 5  |-  ( ( _i  e.  RR  /\  _i  <  0 )  -> 
0  <  ( _i  x.  _i ) )
2019ex 114 . . . 4  |-  ( _i  e.  RR  ->  (
_i  <  0  ->  0  <  ( _i  x.  _i ) ) )
2117, 20mtoi 636 . . 3  |-  ( _i  e.  RR  ->  -.  _i  <  0 )
22 mulgt0 7803 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  0  <  _i )  /\  ( _i  e.  RR  /\  0  <  _i ) )  ->  0  <  ( _i  x.  _i ) )
2322anidms 392 . . . . 5  |-  ( ( _i  e.  RR  /\  0  <  _i )  -> 
0  <  ( _i  x.  _i ) )
2423ex 114 . . . 4  |-  ( _i  e.  RR  ->  (
0  <  _i  ->  0  <  ( _i  x.  _i ) ) )
2517, 24mtoi 636 . . 3  |-  ( _i  e.  RR  ->  -.  0  <  _i )
26 lttri3 7808 . . . 4  |-  ( ( _i  e.  RR  /\  0  e.  RR )  ->  ( _i  =  0  <-> 
( -.  _i  <  0  /\  -.  0  < 
_i ) ) )
274, 26mpan2 419 . . 3  |-  ( _i  e.  RR  ->  (
_i  =  0  <->  ( -.  _i  <  0  /\ 
-.  0  <  _i ) ) )
2821, 25, 27mpbir2and 911 . 2  |-  ( _i  e.  RR  ->  _i  =  0 )
292, 28mto 634 1  |-  -.  _i  e.  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   class class class wbr 3897  (class class class)co 5740   RRcr 7583   0cc0 7584   1c1 7585   _ici 7586    + caddc 7587    x. cmul 7589    < clt 7764   -ucneg 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-ltxr 7769  df-sub 7899  df-neg 7900
This theorem is referenced by:  rimul  8310
  Copyright terms: Public domain W3C validator