ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inelr Unicode version

Theorem inelr 8657
Description: The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
Assertion
Ref Expression
inelr  |-  -.  _i  e.  RR

Proof of Theorem inelr
StepHypRef Expression
1 ine0 8466 . . 3  |-  _i  =/=  0
21neii 2378 . 2  |-  -.  _i  =  0
3 0lt1 8199 . . . . . 6  |-  0  <  1
4 0re 8072 . . . . . . 7  |-  0  e.  RR
5 1re 8071 . . . . . . 7  |-  1  e.  RR
64, 5ltnsymi 8172 . . . . . 6  |-  ( 0  <  1  ->  -.  1  <  0 )
73, 6ax-mp 5 . . . . 5  |-  -.  1  <  0
8 ixi 8656 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
95renegcli 8334 . . . . . . . 8  |-  -u 1  e.  RR
108, 9eqeltri 2278 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
114, 10, 5ltadd1i 8575 . . . . . 6  |-  ( 0  <  ( _i  x.  _i )  <->  ( 0  +  1 )  <  (
( _i  x.  _i )  +  1 ) )
12 ax-1cn 8018 . . . . . . . 8  |-  1  e.  CC
1312addlidi 8215 . . . . . . 7  |-  ( 0  +  1 )  =  1
14 ax-i2m1 8030 . . . . . . 7  |-  ( ( _i  x.  _i )  +  1 )  =  0
1513, 14breq12i 4053 . . . . . 6  |-  ( ( 0  +  1 )  <  ( ( _i  x.  _i )  +  1 )  <->  1  <  0 )
1611, 15bitri 184 . . . . 5  |-  ( 0  <  ( _i  x.  _i )  <->  1  <  0
)
177, 16mtbir 673 . . . 4  |-  -.  0  <  ( _i  x.  _i )
18 mullt0 8553 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  _i  <  0 )  /\  ( _i  e.  RR  /\  _i  <  0
) )  ->  0  <  ( _i  x.  _i ) )
1918anidms 397 . . . . 5  |-  ( ( _i  e.  RR  /\  _i  <  0 )  -> 
0  <  ( _i  x.  _i ) )
2019ex 115 . . . 4  |-  ( _i  e.  RR  ->  (
_i  <  0  ->  0  <  ( _i  x.  _i ) ) )
2117, 20mtoi 666 . . 3  |-  ( _i  e.  RR  ->  -.  _i  <  0 )
22 mulgt0 8147 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  0  <  _i )  /\  ( _i  e.  RR  /\  0  <  _i ) )  ->  0  <  ( _i  x.  _i ) )
2322anidms 397 . . . . 5  |-  ( ( _i  e.  RR  /\  0  <  _i )  -> 
0  <  ( _i  x.  _i ) )
2423ex 115 . . . 4  |-  ( _i  e.  RR  ->  (
0  <  _i  ->  0  <  ( _i  x.  _i ) ) )
2517, 24mtoi 666 . . 3  |-  ( _i  e.  RR  ->  -.  0  <  _i )
26 lttri3 8152 . . . 4  |-  ( ( _i  e.  RR  /\  0  e.  RR )  ->  ( _i  =  0  <-> 
( -.  _i  <  0  /\  -.  0  < 
_i ) ) )
274, 26mpan2 425 . . 3  |-  ( _i  e.  RR  ->  (
_i  =  0  <->  ( -.  _i  <  0  /\ 
-.  0  <  _i ) ) )
2821, 25, 27mpbir2and 947 . 2  |-  ( _i  e.  RR  ->  _i  =  0 )
292, 28mto 664 1  |-  -.  _i  e.  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925   1c1 7926   _ici 7927    + caddc 7928    x. cmul 7930    < clt 8107   -ucneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246
This theorem is referenced by:  rimul  8658
  Copyright terms: Public domain W3C validator