ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inelr Unicode version

Theorem inelr 8731
Description: The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
Assertion
Ref Expression
inelr  |-  -.  _i  e.  RR

Proof of Theorem inelr
StepHypRef Expression
1 ine0 8540 . . 3  |-  _i  =/=  0
21neii 2402 . 2  |-  -.  _i  =  0
3 0lt1 8273 . . . . . 6  |-  0  <  1
4 0re 8146 . . . . . . 7  |-  0  e.  RR
5 1re 8145 . . . . . . 7  |-  1  e.  RR
64, 5ltnsymi 8246 . . . . . 6  |-  ( 0  <  1  ->  -.  1  <  0 )
73, 6ax-mp 5 . . . . 5  |-  -.  1  <  0
8 ixi 8730 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
95renegcli 8408 . . . . . . . 8  |-  -u 1  e.  RR
108, 9eqeltri 2302 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
114, 10, 5ltadd1i 8649 . . . . . 6  |-  ( 0  <  ( _i  x.  _i )  <->  ( 0  +  1 )  <  (
( _i  x.  _i )  +  1 ) )
12 ax-1cn 8092 . . . . . . . 8  |-  1  e.  CC
1312addlidi 8289 . . . . . . 7  |-  ( 0  +  1 )  =  1
14 ax-i2m1 8104 . . . . . . 7  |-  ( ( _i  x.  _i )  +  1 )  =  0
1513, 14breq12i 4092 . . . . . 6  |-  ( ( 0  +  1 )  <  ( ( _i  x.  _i )  +  1 )  <->  1  <  0 )
1611, 15bitri 184 . . . . 5  |-  ( 0  <  ( _i  x.  _i )  <->  1  <  0
)
177, 16mtbir 675 . . . 4  |-  -.  0  <  ( _i  x.  _i )
18 mullt0 8627 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  _i  <  0 )  /\  ( _i  e.  RR  /\  _i  <  0
) )  ->  0  <  ( _i  x.  _i ) )
1918anidms 397 . . . . 5  |-  ( ( _i  e.  RR  /\  _i  <  0 )  -> 
0  <  ( _i  x.  _i ) )
2019ex 115 . . . 4  |-  ( _i  e.  RR  ->  (
_i  <  0  ->  0  <  ( _i  x.  _i ) ) )
2117, 20mtoi 668 . . 3  |-  ( _i  e.  RR  ->  -.  _i  <  0 )
22 mulgt0 8221 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  0  <  _i )  /\  ( _i  e.  RR  /\  0  <  _i ) )  ->  0  <  ( _i  x.  _i ) )
2322anidms 397 . . . . 5  |-  ( ( _i  e.  RR  /\  0  <  _i )  -> 
0  <  ( _i  x.  _i ) )
2423ex 115 . . . 4  |-  ( _i  e.  RR  ->  (
0  <  _i  ->  0  <  ( _i  x.  _i ) ) )
2517, 24mtoi 668 . . 3  |-  ( _i  e.  RR  ->  -.  0  <  _i )
26 lttri3 8226 . . . 4  |-  ( ( _i  e.  RR  /\  0  e.  RR )  ->  ( _i  =  0  <-> 
( -.  _i  <  0  /\  -.  0  < 
_i ) ) )
274, 26mpan2 425 . . 3  |-  ( _i  e.  RR  ->  (
_i  =  0  <->  ( -.  _i  <  0  /\ 
-.  0  <  _i ) ) )
2821, 25, 27mpbir2and 950 . 2  |-  ( _i  e.  RR  ->  _i  =  0 )
292, 28mto 666 1  |-  -.  _i  e.  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999   1c1 8000   _ici 8001    + caddc 8002    x. cmul 8004    < clt 8181   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320
This theorem is referenced by:  rimul  8732
  Copyright terms: Public domain W3C validator