ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inelr Unicode version

Theorem inelr 8503
Description: The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
Assertion
Ref Expression
inelr  |-  -.  _i  e.  RR

Proof of Theorem inelr
StepHypRef Expression
1 ine0 8313 . . 3  |-  _i  =/=  0
21neii 2342 . 2  |-  -.  _i  =  0
3 0lt1 8046 . . . . . 6  |-  0  <  1
4 0re 7920 . . . . . . 7  |-  0  e.  RR
5 1re 7919 . . . . . . 7  |-  1  e.  RR
64, 5ltnsymi 8019 . . . . . 6  |-  ( 0  <  1  ->  -.  1  <  0 )
73, 6ax-mp 5 . . . . 5  |-  -.  1  <  0
8 ixi 8502 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
95renegcli 8181 . . . . . . . 8  |-  -u 1  e.  RR
108, 9eqeltri 2243 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
114, 10, 5ltadd1i 8421 . . . . . 6  |-  ( 0  <  ( _i  x.  _i )  <->  ( 0  +  1 )  <  (
( _i  x.  _i )  +  1 ) )
12 ax-1cn 7867 . . . . . . . 8  |-  1  e.  CC
1312addid2i 8062 . . . . . . 7  |-  ( 0  +  1 )  =  1
14 ax-i2m1 7879 . . . . . . 7  |-  ( ( _i  x.  _i )  +  1 )  =  0
1513, 14breq12i 3998 . . . . . 6  |-  ( ( 0  +  1 )  <  ( ( _i  x.  _i )  +  1 )  <->  1  <  0 )
1611, 15bitri 183 . . . . 5  |-  ( 0  <  ( _i  x.  _i )  <->  1  <  0
)
177, 16mtbir 666 . . . 4  |-  -.  0  <  ( _i  x.  _i )
18 mullt0 8399 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  _i  <  0 )  /\  ( _i  e.  RR  /\  _i  <  0
) )  ->  0  <  ( _i  x.  _i ) )
1918anidms 395 . . . . 5  |-  ( ( _i  e.  RR  /\  _i  <  0 )  -> 
0  <  ( _i  x.  _i ) )
2019ex 114 . . . 4  |-  ( _i  e.  RR  ->  (
_i  <  0  ->  0  <  ( _i  x.  _i ) ) )
2117, 20mtoi 659 . . 3  |-  ( _i  e.  RR  ->  -.  _i  <  0 )
22 mulgt0 7994 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  0  <  _i )  /\  ( _i  e.  RR  /\  0  <  _i ) )  ->  0  <  ( _i  x.  _i ) )
2322anidms 395 . . . . 5  |-  ( ( _i  e.  RR  /\  0  <  _i )  -> 
0  <  ( _i  x.  _i ) )
2423ex 114 . . . 4  |-  ( _i  e.  RR  ->  (
0  <  _i  ->  0  <  ( _i  x.  _i ) ) )
2517, 24mtoi 659 . . 3  |-  ( _i  e.  RR  ->  -.  0  <  _i )
26 lttri3 7999 . . . 4  |-  ( ( _i  e.  RR  /\  0  e.  RR )  ->  ( _i  =  0  <-> 
( -.  _i  <  0  /\  -.  0  < 
_i ) ) )
274, 26mpan2 423 . . 3  |-  ( _i  e.  RR  ->  (
_i  =  0  <->  ( -.  _i  <  0  /\ 
-.  0  <  _i ) ) )
2821, 25, 27mpbir2and 939 . 2  |-  ( _i  e.  RR  ->  _i  =  0 )
292, 28mto 657 1  |-  -.  _i  e.  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775   _ici 7776    + caddc 7777    x. cmul 7779    < clt 7954   -ucneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093
This theorem is referenced by:  rimul  8504
  Copyright terms: Public domain W3C validator