ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inelr Unicode version

Theorem inelr 8370
Description: The imaginary unit  _i is not a real number. (Contributed by NM, 6-May-1999.)
Assertion
Ref Expression
inelr  |-  -.  _i  e.  RR

Proof of Theorem inelr
StepHypRef Expression
1 ine0 8180 . . 3  |-  _i  =/=  0
21neii 2311 . 2  |-  -.  _i  =  0
3 0lt1 7913 . . . . . 6  |-  0  <  1
4 0re 7790 . . . . . . 7  |-  0  e.  RR
5 1re 7789 . . . . . . 7  |-  1  e.  RR
64, 5ltnsymi 7887 . . . . . 6  |-  ( 0  <  1  ->  -.  1  <  0 )
73, 6ax-mp 5 . . . . 5  |-  -.  1  <  0
8 ixi 8369 . . . . . . . 8  |-  ( _i  x.  _i )  = 
-u 1
95renegcli 8048 . . . . . . . 8  |-  -u 1  e.  RR
108, 9eqeltri 2213 . . . . . . 7  |-  ( _i  x.  _i )  e.  RR
114, 10, 5ltadd1i 8288 . . . . . 6  |-  ( 0  <  ( _i  x.  _i )  <->  ( 0  +  1 )  <  (
( _i  x.  _i )  +  1 ) )
12 ax-1cn 7737 . . . . . . . 8  |-  1  e.  CC
1312addid2i 7929 . . . . . . 7  |-  ( 0  +  1 )  =  1
14 ax-i2m1 7749 . . . . . . 7  |-  ( ( _i  x.  _i )  +  1 )  =  0
1513, 14breq12i 3946 . . . . . 6  |-  ( ( 0  +  1 )  <  ( ( _i  x.  _i )  +  1 )  <->  1  <  0 )
1611, 15bitri 183 . . . . 5  |-  ( 0  <  ( _i  x.  _i )  <->  1  <  0
)
177, 16mtbir 661 . . . 4  |-  -.  0  <  ( _i  x.  _i )
18 mullt0 8266 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  _i  <  0 )  /\  ( _i  e.  RR  /\  _i  <  0
) )  ->  0  <  ( _i  x.  _i ) )
1918anidms 395 . . . . 5  |-  ( ( _i  e.  RR  /\  _i  <  0 )  -> 
0  <  ( _i  x.  _i ) )
2019ex 114 . . . 4  |-  ( _i  e.  RR  ->  (
_i  <  0  ->  0  <  ( _i  x.  _i ) ) )
2117, 20mtoi 654 . . 3  |-  ( _i  e.  RR  ->  -.  _i  <  0 )
22 mulgt0 7863 . . . . . 6  |-  ( ( ( _i  e.  RR  /\  0  <  _i )  /\  ( _i  e.  RR  /\  0  <  _i ) )  ->  0  <  ( _i  x.  _i ) )
2322anidms 395 . . . . 5  |-  ( ( _i  e.  RR  /\  0  <  _i )  -> 
0  <  ( _i  x.  _i ) )
2423ex 114 . . . 4  |-  ( _i  e.  RR  ->  (
0  <  _i  ->  0  <  ( _i  x.  _i ) ) )
2517, 24mtoi 654 . . 3  |-  ( _i  e.  RR  ->  -.  0  <  _i )
26 lttri3 7868 . . . 4  |-  ( ( _i  e.  RR  /\  0  e.  RR )  ->  ( _i  =  0  <-> 
( -.  _i  <  0  /\  -.  0  < 
_i ) ) )
274, 26mpan2 422 . . 3  |-  ( _i  e.  RR  ->  (
_i  =  0  <->  ( -.  _i  <  0  /\ 
-.  0  <  _i ) ) )
2821, 25, 27mpbir2and 929 . 2  |-  ( _i  e.  RR  ->  _i  =  0 )
292, 28mto 652 1  |-  -.  _i  e.  RR
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645   _ici 7646    + caddc 7647    x. cmul 7649    < clt 7824   -ucneg 7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-sub 7959  df-neg 7960
This theorem is referenced by:  rimul  8371
  Copyright terms: Public domain W3C validator