| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axi2m1 | Unicode version | ||
| Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8001. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axi2m1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r 7834 |
. . . . . 6
| |
| 2 | 1sr 7835 |
. . . . . 6
| |
| 3 | mulcnsr 7919 |
. . . . . 6
| |
| 4 | 1, 2, 1, 2, 3 | mp4an 427 |
. . . . 5
|
| 5 | 00sr 7853 |
. . . . . . . . 9
| |
| 6 | 1, 5 | ax-mp 5 |
. . . . . . . 8
|
| 7 | 1idsr 7852 |
. . . . . . . . . . 11
| |
| 8 | 2, 7 | ax-mp 5 |
. . . . . . . . . 10
|
| 9 | 8 | oveq2i 5936 |
. . . . . . . . 9
|
| 10 | m1r 7836 |
. . . . . . . . . 10
| |
| 11 | 1idsr 7852 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
|
| 13 | 9, 12 | eqtri 2217 |
. . . . . . . 8
|
| 14 | 6, 13 | oveq12i 5937 |
. . . . . . 7
|
| 15 | addcomsrg 7839 |
. . . . . . . 8
| |
| 16 | 1, 10, 15 | mp2an 426 |
. . . . . . 7
|
| 17 | 0idsr 7851 |
. . . . . . . 8
| |
| 18 | 10, 17 | ax-mp 5 |
. . . . . . 7
|
| 19 | 14, 16, 18 | 3eqtri 2221 |
. . . . . 6
|
| 20 | 00sr 7853 |
. . . . . . . . 9
| |
| 21 | 2, 20 | ax-mp 5 |
. . . . . . . 8
|
| 22 | 1idsr 7852 |
. . . . . . . . 9
| |
| 23 | 1, 22 | ax-mp 5 |
. . . . . . . 8
|
| 24 | 21, 23 | oveq12i 5937 |
. . . . . . 7
|
| 25 | 0idsr 7851 |
. . . . . . . 8
| |
| 26 | 1, 25 | ax-mp 5 |
. . . . . . 7
|
| 27 | 24, 26 | eqtri 2217 |
. . . . . 6
|
| 28 | 19, 27 | opeq12i 3814 |
. . . . 5
|
| 29 | 4, 28 | eqtri 2217 |
. . . 4
|
| 30 | 29 | oveq1i 5935 |
. . 3
|
| 31 | addresr 7921 |
. . . 4
| |
| 32 | 10, 2, 31 | mp2an 426 |
. . 3
|
| 33 | m1p1sr 7844 |
. . . 4
| |
| 34 | 33 | opeq1i 3812 |
. . 3
|
| 35 | 30, 32, 34 | 3eqtri 2221 |
. 2
|
| 36 | df-i 7905 |
. . . 4
| |
| 37 | 36, 36 | oveq12i 5937 |
. . 3
|
| 38 | df-1 7904 |
. . 3
| |
| 39 | 37, 38 | oveq12i 5937 |
. 2
|
| 40 | df-0 7903 |
. 2
| |
| 41 | 35, 39, 40 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-imp 7553 df-enr 7810 df-nr 7811 df-plr 7812 df-mr 7813 df-0r 7815 df-1r 7816 df-m1r 7817 df-c 7902 df-0 7903 df-1 7904 df-i 7905 df-add 7907 df-mul 7908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |