ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 Unicode version

Theorem axi2m1 8008
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8050. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1  |-  ( ( _i  x.  _i )  +  1 )  =  0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 7883 . . . . . 6  |-  0R  e.  R.
2 1sr 7884 . . . . . 6  |-  1R  e.  R.
3 mulcnsr 7968 . . . . . 6  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( 0R  e.  R.  /\ 
1R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >. )
41, 2, 1, 2, 3mp4an 427 . . . . 5  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.
5 00sr 7902 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  0R )  =  0R
7 1idsr 7901 . . . . . . . . . . 11  |-  ( 1R  e.  R.  ->  ( 1R  .R  1R )  =  1R )
82, 7ax-mp 5 . . . . . . . . . 10  |-  ( 1R 
.R  1R )  =  1R
98oveq2i 5968 . . . . . . . . 9  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  ( -1R  .R  1R )
10 m1r 7885 . . . . . . . . . 10  |-  -1R  e.  R.
11 1idsr 7901 . . . . . . . . . 10  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  1R )  =  -1R )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( -1R 
.R  1R )  =  -1R
139, 12eqtri 2227 . . . . . . . 8  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  -1R
146, 13oveq12i 5969 . . . . . . 7  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  ( 0R  +R  -1R )
15 addcomsrg 7888 . . . . . . . 8  |-  ( ( 0R  e.  R.  /\  -1R  e.  R. )  -> 
( 0R  +R  -1R )  =  ( -1R  +R  0R ) )
161, 10, 15mp2an 426 . . . . . . 7  |-  ( 0R 
+R  -1R )  =  ( -1R  +R  0R )
17 0idsr 7900 . . . . . . . 8  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
1810, 17ax-mp 5 . . . . . . 7  |-  ( -1R 
+R  0R )  =  -1R
1914, 16, 183eqtri 2231 . . . . . 6  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  -1R
20 00sr 7902 . . . . . . . . 9  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
212, 20ax-mp 5 . . . . . . . 8  |-  ( 1R 
.R  0R )  =  0R
22 1idsr 7901 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  1R )  =  0R )
231, 22ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  1R )  =  0R
2421, 23oveq12i 5969 . . . . . . 7  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  ( 0R  +R  0R )
25 0idsr 7900 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
261, 25ax-mp 5 . . . . . . 7  |-  ( 0R 
+R  0R )  =  0R
2724, 26eqtri 2227 . . . . . 6  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  0R
2819, 27opeq12i 3830 . . . . 5  |-  <. (
( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.  =  <. -1R
,  0R >.
294, 28eqtri 2227 . . . 4  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. -1R ,  0R >.
3029oveq1i 5967 . . 3  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )
31 addresr 7970 . . . 4  |-  ( ( -1R  e.  R.  /\  1R  e.  R. )  -> 
( <. -1R ,  0R >.  + 
<. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >. )
3210, 2, 31mp2an 426 . . 3  |-  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >.
33 m1p1sr 7893 . . . 4  |-  ( -1R 
+R  1R )  =  0R
3433opeq1i 3828 . . 3  |-  <. ( -1R  +R  1R ) ,  0R >.  =  <. 0R ,  0R >.
3530, 32, 343eqtri 2231 . 2  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  <. 0R ,  0R >.
36 df-i 7954 . . . 4  |-  _i  =  <. 0R ,  1R >.
3736, 36oveq12i 5969 . . 3  |-  ( _i  x.  _i )  =  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )
38 df-1 7953 . . 3  |-  1  =  <. 1R ,  0R >.
3937, 38oveq12i 5969 . 2  |-  ( ( _i  x.  _i )  +  1 )  =  ( ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  +  <. 1R ,  0R >. )
40 df-0 7952 . 2  |-  0  =  <. 0R ,  0R >.
4135, 39, 403eqtr4i 2237 1  |-  ( ( _i  x.  _i )  +  1 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177   <.cop 3641  (class class class)co 5957   R.cnr 7430   0Rc0r 7431   1Rc1r 7432   -1Rcm1r 7433    +R cplr 7434    .R cmr 7435   0cc0 7945   1c1 7946   _ici 7947    + caddc 7948    x. cmul 7950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-i1p 7600  df-iplp 7601  df-imp 7602  df-enr 7859  df-nr 7860  df-plr 7861  df-mr 7862  df-0r 7864  df-1r 7865  df-m1r 7866  df-c 7951  df-0 7952  df-1 7953  df-i 7954  df-add 7956  df-mul 7957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator