ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi2m1 Unicode version

Theorem axi2m1 8058
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8100. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
axi2m1  |-  ( ( _i  x.  _i )  +  1 )  =  0

Proof of Theorem axi2m1
StepHypRef Expression
1 0r 7933 . . . . . 6  |-  0R  e.  R.
2 1sr 7934 . . . . . 6  |-  1R  e.  R.
3 mulcnsr 8018 . . . . . 6  |-  ( ( ( 0R  e.  R.  /\ 
1R  e.  R. )  /\  ( 0R  e.  R.  /\ 
1R  e.  R. )
)  ->  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >. )
41, 2, 1, 2, 3mp4an 427 . . . . 5  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. ( ( 0R 
.R  0R )  +R  ( -1R  .R  ( 1R  .R  1R ) ) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.
5 00sr 7952 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  0R )  =  0R )
61, 5ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  0R )  =  0R
7 1idsr 7951 . . . . . . . . . . 11  |-  ( 1R  e.  R.  ->  ( 1R  .R  1R )  =  1R )
82, 7ax-mp 5 . . . . . . . . . 10  |-  ( 1R 
.R  1R )  =  1R
98oveq2i 6011 . . . . . . . . 9  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  ( -1R  .R  1R )
10 m1r 7935 . . . . . . . . . 10  |-  -1R  e.  R.
11 1idsr 7951 . . . . . . . . . 10  |-  ( -1R 
e.  R.  ->  ( -1R 
.R  1R )  =  -1R )
1210, 11ax-mp 5 . . . . . . . . 9  |-  ( -1R 
.R  1R )  =  -1R
139, 12eqtri 2250 . . . . . . . 8  |-  ( -1R 
.R  ( 1R  .R  1R ) )  =  -1R
146, 13oveq12i 6012 . . . . . . 7  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  ( 0R  +R  -1R )
15 addcomsrg 7938 . . . . . . . 8  |-  ( ( 0R  e.  R.  /\  -1R  e.  R. )  -> 
( 0R  +R  -1R )  =  ( -1R  +R  0R ) )
161, 10, 15mp2an 426 . . . . . . 7  |-  ( 0R 
+R  -1R )  =  ( -1R  +R  0R )
17 0idsr 7950 . . . . . . . 8  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
1810, 17ax-mp 5 . . . . . . 7  |-  ( -1R 
+R  0R )  =  -1R
1914, 16, 183eqtri 2254 . . . . . 6  |-  ( ( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) )  =  -1R
20 00sr 7952 . . . . . . . . 9  |-  ( 1R  e.  R.  ->  ( 1R  .R  0R )  =  0R )
212, 20ax-mp 5 . . . . . . . 8  |-  ( 1R 
.R  0R )  =  0R
22 1idsr 7951 . . . . . . . . 9  |-  ( 0R  e.  R.  ->  ( 0R  .R  1R )  =  0R )
231, 22ax-mp 5 . . . . . . . 8  |-  ( 0R 
.R  1R )  =  0R
2421, 23oveq12i 6012 . . . . . . 7  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  ( 0R  +R  0R )
25 0idsr 7950 . . . . . . . 8  |-  ( 0R  e.  R.  ->  ( 0R  +R  0R )  =  0R )
261, 25ax-mp 5 . . . . . . 7  |-  ( 0R 
+R  0R )  =  0R
2724, 26eqtri 2250 . . . . . 6  |-  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) )  =  0R
2819, 27opeq12i 3861 . . . . 5  |-  <. (
( 0R  .R  0R )  +R  ( -1R  .R  ( 1R  .R  1R )
) ) ,  ( ( 1R  .R  0R )  +R  ( 0R  .R  1R ) ) >.  =  <. -1R
,  0R >.
294, 28eqtri 2250 . . . 4  |-  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  =  <. -1R ,  0R >.
3029oveq1i 6010 . . 3  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )
31 addresr 8020 . . . 4  |-  ( ( -1R  e.  R.  /\  1R  e.  R. )  -> 
( <. -1R ,  0R >.  + 
<. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >. )
3210, 2, 31mp2an 426 . . 3  |-  ( <. -1R ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( -1R  +R  1R ) ,  0R >.
33 m1p1sr 7943 . . . 4  |-  ( -1R 
+R  1R )  =  0R
3433opeq1i 3859 . . 3  |-  <. ( -1R  +R  1R ) ,  0R >.  =  <. 0R ,  0R >.
3530, 32, 343eqtri 2254 . 2  |-  ( (
<. 0R ,  1R >.  x. 
<. 0R ,  1R >. )  +  <. 1R ,  0R >. )  =  <. 0R ,  0R >.
36 df-i 8004 . . . 4  |-  _i  =  <. 0R ,  1R >.
3736, 36oveq12i 6012 . . 3  |-  ( _i  x.  _i )  =  ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )
38 df-1 8003 . . 3  |-  1  =  <. 1R ,  0R >.
3937, 38oveq12i 6012 . 2  |-  ( ( _i  x.  _i )  +  1 )  =  ( ( <. 0R ,  1R >.  x.  <. 0R ,  1R >. )  +  <. 1R ,  0R >. )
40 df-0 8002 . 2  |-  0  =  <. 0R ,  0R >.
4135, 39, 403eqtr4i 2260 1  |-  ( ( _i  x.  _i )  +  1 )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   <.cop 3669  (class class class)co 6000   R.cnr 7480   0Rc0r 7481   1Rc1r 7482   -1Rcm1r 7483    +R cplr 7484    .R cmr 7485   0cc0 7995   1c1 7996   _ici 7997    + caddc 7998    x. cmul 8000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-imp 7652  df-enr 7909  df-nr 7910  df-plr 7911  df-mr 7912  df-0r 7914  df-1r 7915  df-m1r 7916  df-c 8001  df-0 8002  df-1 8003  df-i 8004  df-add 8006  df-mul 8007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator