| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > axi2m1 | Unicode version | ||
| Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7984. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axi2m1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0r 7817 | 
. . . . . 6
 | |
| 2 | 1sr 7818 | 
. . . . . 6
 | |
| 3 | mulcnsr 7902 | 
. . . . . 6
 | |
| 4 | 1, 2, 1, 2, 3 | mp4an 427 | 
. . . . 5
 | 
| 5 | 00sr 7836 | 
. . . . . . . . 9
 | |
| 6 | 1, 5 | ax-mp 5 | 
. . . . . . . 8
 | 
| 7 | 1idsr 7835 | 
. . . . . . . . . . 11
 | |
| 8 | 2, 7 | ax-mp 5 | 
. . . . . . . . . 10
 | 
| 9 | 8 | oveq2i 5933 | 
. . . . . . . . 9
 | 
| 10 | m1r 7819 | 
. . . . . . . . . 10
 | |
| 11 | 1idsr 7835 | 
. . . . . . . . . 10
 | |
| 12 | 10, 11 | ax-mp 5 | 
. . . . . . . . 9
 | 
| 13 | 9, 12 | eqtri 2217 | 
. . . . . . . 8
 | 
| 14 | 6, 13 | oveq12i 5934 | 
. . . . . . 7
 | 
| 15 | addcomsrg 7822 | 
. . . . . . . 8
 | |
| 16 | 1, 10, 15 | mp2an 426 | 
. . . . . . 7
 | 
| 17 | 0idsr 7834 | 
. . . . . . . 8
 | |
| 18 | 10, 17 | ax-mp 5 | 
. . . . . . 7
 | 
| 19 | 14, 16, 18 | 3eqtri 2221 | 
. . . . . 6
 | 
| 20 | 00sr 7836 | 
. . . . . . . . 9
 | |
| 21 | 2, 20 | ax-mp 5 | 
. . . . . . . 8
 | 
| 22 | 1idsr 7835 | 
. . . . . . . . 9
 | |
| 23 | 1, 22 | ax-mp 5 | 
. . . . . . . 8
 | 
| 24 | 21, 23 | oveq12i 5934 | 
. . . . . . 7
 | 
| 25 | 0idsr 7834 | 
. . . . . . . 8
 | |
| 26 | 1, 25 | ax-mp 5 | 
. . . . . . 7
 | 
| 27 | 24, 26 | eqtri 2217 | 
. . . . . 6
 | 
| 28 | 19, 27 | opeq12i 3813 | 
. . . . 5
 | 
| 29 | 4, 28 | eqtri 2217 | 
. . . 4
 | 
| 30 | 29 | oveq1i 5932 | 
. . 3
 | 
| 31 | addresr 7904 | 
. . . 4
 | |
| 32 | 10, 2, 31 | mp2an 426 | 
. . 3
 | 
| 33 | m1p1sr 7827 | 
. . . 4
 | |
| 34 | 33 | opeq1i 3811 | 
. . 3
 | 
| 35 | 30, 32, 34 | 3eqtri 2221 | 
. 2
 | 
| 36 | df-i 7888 | 
. . . 4
 | |
| 37 | 36, 36 | oveq12i 5934 | 
. . 3
 | 
| 38 | df-1 7887 | 
. . 3
 | |
| 39 | 37, 38 | oveq12i 5934 | 
. 2
 | 
| 40 | df-0 7886 | 
. 2
 | |
| 41 | 35, 39, 40 | 3eqtr4i 2227 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-imp 7536 df-enr 7793 df-nr 7794 df-plr 7795 df-mr 7796 df-0r 7798 df-1r 7799 df-m1r 7800 df-c 7885 df-0 7886 df-1 7887 df-i 7888 df-add 7890 df-mul 7891 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |