| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | Unicode version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 7984 |
. 2
| |
| 2 | ax-icn 7974 |
. . . 4
| |
| 3 | mulcl 8006 |
. . . 4
| |
| 4 | 2, 2, 3 | mp2an 426 |
. . 3
|
| 5 | ax-1cn 7972 |
. . 3
| |
| 6 | addcl 8004 |
. . 3
| |
| 7 | 4, 5, 6 | mp2an 426 |
. 2
|
| 8 | 1, 7 | eqeltrri 2270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-i2m1 7984 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 0cnd 8019 c0ex 8020 addlid 8165 00id 8167 cnegexlem2 8202 negcl 8226 subid 8245 subid1 8246 neg0 8272 negid 8273 negsub 8274 subneg 8275 negneg 8276 negeq0 8280 negsubdi 8282 renegcl 8287 mul02 8413 mul01 8415 mulneg1 8421 ixi 8610 negap0 8657 muleqadd 8695 divvalap 8701 div0ap 8729 recgt0 8877 0m0e0 9102 2muline0 9216 elznn0 9341 ser0 10625 0exp0e1 10636 expeq0 10662 0exp 10666 sq0 10722 bcval5 10855 shftval3 10992 shftidt2 10997 cjap0 11072 cjne0 11073 abs0 11223 abs2dif 11271 clim0 11450 climz 11457 serclim0 11470 sumrbdclem 11542 fsum3cvg 11543 summodclem3 11545 summodclem2a 11546 fisumss 11557 fsumrelem 11636 ef0 11837 eftlub 11855 sin0 11894 tan0 11896 4sqlem11 12570 cncrng 14125 cnfld0 14127 cnbl0 14770 cnblcld 14771 dvconst 14930 dvconstre 14932 dvconstss 14934 dvcnp2cntop 14935 dvrecap 14949 dveflem 14962 plyun0 14972 plycjlemc 14996 plycj 14997 dvply2g 15002 sinhalfpilem 15027 sin2kpi 15047 cos2kpi 15048 sinkpi 15083 1sgm2ppw 15231 dcapnconst 15705 |
| Copyright terms: Public domain | W3C validator |