![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cn | Unicode version |
Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 7977 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-icn 7967 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | mulcl 7999 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 2, 3 | mp2an 426 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | ax-1cn 7965 |
. . 3
![]() ![]() ![]() ![]() | |
6 | addcl 7997 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | mp2an 426 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | eqeltrri 2267 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-i2m1 7977 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 0cnd 8012 c0ex 8013 addlid 8158 00id 8160 cnegexlem2 8195 negcl 8219 subid 8238 subid1 8239 neg0 8265 negid 8266 negsub 8267 subneg 8268 negneg 8269 negeq0 8273 negsubdi 8275 renegcl 8280 mul02 8406 mul01 8408 mulneg1 8414 ixi 8602 negap0 8649 muleqadd 8687 divvalap 8693 div0ap 8721 recgt0 8869 0m0e0 9094 2muline0 9207 elznn0 9332 ser0 10604 0exp0e1 10615 expeq0 10641 0exp 10645 sq0 10701 bcval5 10834 shftval3 10971 shftidt2 10976 cjap0 11051 cjne0 11052 abs0 11202 abs2dif 11250 clim0 11428 climz 11435 serclim0 11448 sumrbdclem 11520 fsum3cvg 11521 summodclem3 11523 summodclem2a 11524 fisumss 11535 fsumrelem 11614 ef0 11815 eftlub 11833 sin0 11872 tan0 11874 4sqlem11 12539 cncrng 14057 cnfld0 14059 cnbl0 14702 cnblcld 14703 dvconst 14846 dvcnp2cntop 14848 dvrecap 14862 dveflem 14872 plyun0 14882 sinhalfpilem 14926 sin2kpi 14946 cos2kpi 14947 sinkpi 14982 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |