![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0cn | Unicode version |
Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 7979 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-icn 7969 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | mulcl 8001 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 2, 3 | mp2an 426 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | ax-1cn 7967 |
. . 3
![]() ![]() ![]() ![]() | |
6 | addcl 7999 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | mp2an 426 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | eqeltrri 2267 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-i2m1 7979 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: 0cnd 8014 c0ex 8015 addlid 8160 00id 8162 cnegexlem2 8197 negcl 8221 subid 8240 subid1 8241 neg0 8267 negid 8268 negsub 8269 subneg 8270 negneg 8271 negeq0 8275 negsubdi 8277 renegcl 8282 mul02 8408 mul01 8410 mulneg1 8416 ixi 8604 negap0 8651 muleqadd 8689 divvalap 8695 div0ap 8723 recgt0 8871 0m0e0 9096 2muline0 9210 elznn0 9335 ser0 10607 0exp0e1 10618 expeq0 10644 0exp 10648 sq0 10704 bcval5 10837 shftval3 10974 shftidt2 10979 cjap0 11054 cjne0 11055 abs0 11205 abs2dif 11253 clim0 11431 climz 11438 serclim0 11451 sumrbdclem 11523 fsum3cvg 11524 summodclem3 11526 summodclem2a 11527 fisumss 11538 fsumrelem 11617 ef0 11818 eftlub 11836 sin0 11875 tan0 11877 4sqlem11 12542 cncrng 14068 cnfld0 14070 cnbl0 14713 cnblcld 14714 dvconst 14873 dvconstre 14875 dvconstss 14877 dvcnp2cntop 14878 dvrecap 14892 dveflem 14905 plyun0 14915 plycjlemc 14938 plycj 14939 sinhalfpilem 14967 sin2kpi 14987 cos2kpi 14988 sinkpi 15023 dcapnconst 15621 |
Copyright terms: Public domain | W3C validator |