| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | Unicode version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 8104 |
. 2
| |
| 2 | ax-icn 8094 |
. . . 4
| |
| 3 | mulcl 8126 |
. . . 4
| |
| 4 | 2, 2, 3 | mp2an 426 |
. . 3
|
| 5 | ax-1cn 8092 |
. . 3
| |
| 6 | addcl 8124 |
. . 3
| |
| 7 | 4, 5, 6 | mp2an 426 |
. 2
|
| 8 | 1, 7 | eqeltrri 2303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-mulcl 8097 ax-i2m1 8104 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: 0cnd 8139 c0ex 8140 addlid 8285 00id 8287 cnegexlem2 8322 negcl 8346 subid 8365 subid1 8366 neg0 8392 negid 8393 negsub 8394 subneg 8395 negneg 8396 negeq0 8400 negsubdi 8402 renegcl 8407 mul02 8533 mul01 8535 mulneg1 8541 ixi 8730 negap0 8777 muleqadd 8815 divvalap 8821 div0ap 8849 recgt0 8997 0m0e0 9222 2muline0 9336 elznn0 9461 ser0 10755 0exp0e1 10766 expeq0 10792 0exp 10796 sq0 10852 bcval5 10985 shftval3 11338 shftidt2 11343 cjap0 11418 cjne0 11419 abs0 11569 abs2dif 11617 clim0 11796 climz 11803 serclim0 11816 sumrbdclem 11888 fsum3cvg 11889 summodclem3 11891 summodclem2a 11892 fisumss 11903 fsumrelem 11982 ef0 12183 eftlub 12201 sin0 12240 tan0 12242 4sqlem11 12924 cncrng 14533 cnfld0 14535 cnbl0 15208 cnblcld 15209 dvconst 15368 dvconstre 15370 dvconstss 15372 dvcnp2cntop 15373 dvrecap 15387 dveflem 15400 plyun0 15410 plycjlemc 15434 plycj 15435 dvply2g 15440 sinhalfpilem 15465 sin2kpi 15485 cos2kpi 15486 sinkpi 15521 1sgm2ppw 15669 dcapnconst 16429 |
| Copyright terms: Public domain | W3C validator |