| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0cn | Unicode version | ||
| Description: 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 8001 |
. 2
| |
| 2 | ax-icn 7991 |
. . . 4
| |
| 3 | mulcl 8023 |
. . . 4
| |
| 4 | 2, 2, 3 | mp2an 426 |
. . 3
|
| 5 | ax-1cn 7989 |
. . 3
| |
| 6 | addcl 8021 |
. . 3
| |
| 7 | 4, 5, 6 | mp2an 426 |
. 2
|
| 8 | 1, 7 | eqeltrri 2270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-i2m1 8001 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: 0cnd 8036 c0ex 8037 addlid 8182 00id 8184 cnegexlem2 8219 negcl 8243 subid 8262 subid1 8263 neg0 8289 negid 8290 negsub 8291 subneg 8292 negneg 8293 negeq0 8297 negsubdi 8299 renegcl 8304 mul02 8430 mul01 8432 mulneg1 8438 ixi 8627 negap0 8674 muleqadd 8712 divvalap 8718 div0ap 8746 recgt0 8894 0m0e0 9119 2muline0 9233 elznn0 9358 ser0 10642 0exp0e1 10653 expeq0 10679 0exp 10683 sq0 10739 bcval5 10872 shftval3 11009 shftidt2 11014 cjap0 11089 cjne0 11090 abs0 11240 abs2dif 11288 clim0 11467 climz 11474 serclim0 11487 sumrbdclem 11559 fsum3cvg 11560 summodclem3 11562 summodclem2a 11563 fisumss 11574 fsumrelem 11653 ef0 11854 eftlub 11872 sin0 11911 tan0 11913 4sqlem11 12595 cncrng 14201 cnfld0 14203 cnbl0 14854 cnblcld 14855 dvconst 15014 dvconstre 15016 dvconstss 15018 dvcnp2cntop 15019 dvrecap 15033 dveflem 15046 plyun0 15056 plycjlemc 15080 plycj 15081 dvply2g 15086 sinhalfpilem 15111 sin2kpi 15131 cos2kpi 15132 sinkpi 15167 1sgm2ppw 15315 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |