ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixi Unicode version

Theorem ixi 8542
Description:  _i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ixi  |-  ( _i  x.  _i )  = 
-u 1

Proof of Theorem ixi
StepHypRef Expression
1 df-neg 8133 . 2  |-  -u 1  =  ( 0  -  1 )
2 ax-i2m1 7918 . . 3  |-  ( ( _i  x.  _i )  +  1 )  =  0
3 0cn 7951 . . . 4  |-  0  e.  CC
4 ax-1cn 7906 . . . 4  |-  1  e.  CC
5 ax-icn 7908 . . . . 5  |-  _i  e.  CC
65, 5mulcli 7964 . . . 4  |-  ( _i  x.  _i )  e.  CC
73, 4, 6subadd2i 8247 . . 3  |-  ( ( 0  -  1 )  =  ( _i  x.  _i )  <->  ( ( _i  x.  _i )  +  1 )  =  0 )
82, 7mpbir 146 . 2  |-  ( 0  -  1 )  =  ( _i  x.  _i )
91, 8eqtr2i 2199 1  |-  ( _i  x.  _i )  = 
-u 1
Colors of variables: wff set class
Syntax hints:    = wceq 1353  (class class class)co 5877   0cc0 7813   1c1 7814   _ici 7815    + caddc 7816    x. cmul 7818    - cmin 8130   -ucneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133
This theorem is referenced by:  inelr  8543  mulreim  8563  recextlem1  8610  cju  8920  irec  10622  i2  10623  crre  10868  remim  10871  remullem  10882  absi  11070  cosadd  11747  absefib  11780  efieq1re  11781  demoivreALT  11783
  Copyright terms: Public domain W3C validator