ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixi Unicode version

Theorem ixi 8338
Description:  _i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ixi  |-  ( _i  x.  _i )  = 
-u 1

Proof of Theorem ixi
StepHypRef Expression
1 df-neg 7929 . 2  |-  -u 1  =  ( 0  -  1 )
2 ax-i2m1 7718 . . 3  |-  ( ( _i  x.  _i )  +  1 )  =  0
3 0cn 7751 . . . 4  |-  0  e.  CC
4 ax-1cn 7706 . . . 4  |-  1  e.  CC
5 ax-icn 7708 . . . . 5  |-  _i  e.  CC
65, 5mulcli 7764 . . . 4  |-  ( _i  x.  _i )  e.  CC
73, 4, 6subadd2i 8043 . . 3  |-  ( ( 0  -  1 )  =  ( _i  x.  _i )  <->  ( ( _i  x.  _i )  +  1 )  =  0 )
82, 7mpbir 145 . 2  |-  ( 0  -  1 )  =  ( _i  x.  _i )
91, 8eqtr2i 2159 1  |-  ( _i  x.  _i )  = 
-u 1
Colors of variables: wff set class
Syntax hints:    = wceq 1331  (class class class)co 5767   0cc0 7613   1c1 7614   _ici 7615    + caddc 7616    x. cmul 7618    - cmin 7926   -ucneg 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447  ax-resscn 7705  ax-1cn 7706  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-sub 7928  df-neg 7929
This theorem is referenced by:  inelr  8339  mulreim  8359  recextlem1  8405  cju  8712  irec  10385  i2  10386  crre  10622  remim  10625  remullem  10636  absi  10824  cosadd  11429  absefib  11462  efieq1re  11463  demoivreALT  11465
  Copyright terms: Public domain W3C validator