ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixi Unicode version

Theorem ixi 8481
Description:  _i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ixi  |-  ( _i  x.  _i )  = 
-u 1

Proof of Theorem ixi
StepHypRef Expression
1 df-neg 8072 . 2  |-  -u 1  =  ( 0  -  1 )
2 ax-i2m1 7858 . . 3  |-  ( ( _i  x.  _i )  +  1 )  =  0
3 0cn 7891 . . . 4  |-  0  e.  CC
4 ax-1cn 7846 . . . 4  |-  1  e.  CC
5 ax-icn 7848 . . . . 5  |-  _i  e.  CC
65, 5mulcli 7904 . . . 4  |-  ( _i  x.  _i )  e.  CC
73, 4, 6subadd2i 8186 . . 3  |-  ( ( 0  -  1 )  =  ( _i  x.  _i )  <->  ( ( _i  x.  _i )  +  1 )  =  0 )
82, 7mpbir 145 . 2  |-  ( 0  -  1 )  =  ( _i  x.  _i )
91, 8eqtr2i 2187 1  |-  ( _i  x.  _i )  = 
-u 1
Colors of variables: wff set class
Syntax hints:    = wceq 1343  (class class class)co 5842   0cc0 7753   1c1 7754   _ici 7755    + caddc 7756    x. cmul 7758    - cmin 8069   -ucneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072
This theorem is referenced by:  inelr  8482  mulreim  8502  recextlem1  8548  cju  8856  irec  10554  i2  10555  crre  10799  remim  10802  remullem  10813  absi  11001  cosadd  11678  absefib  11711  efieq1re  11712  demoivreALT  11714
  Copyright terms: Public domain W3C validator