| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opthprc | Unicode version | ||
| Description: Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.) |
| Ref | Expression |
|---|---|
| opthprc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . . 5
| |
| 2 | 0ex 4171 |
. . . . . . . . 9
| |
| 3 | 2 | snid 3664 |
. . . . . . . 8
|
| 4 | opelxp 4705 |
. . . . . . . 8
| |
| 5 | 3, 4 | mpbiran2 944 |
. . . . . . 7
|
| 6 | opelxp 4705 |
. . . . . . . 8
| |
| 7 | 0nep0 4209 |
. . . . . . . . . 10
| |
| 8 | 2 | elsn 3649 |
. . . . . . . . . 10
|
| 9 | 7, 8 | nemtbir 2465 |
. . . . . . . . 9
|
| 10 | 9 | bianfi 950 |
. . . . . . . 8
|
| 11 | 6, 10 | bitr4i 187 |
. . . . . . 7
|
| 12 | 5, 11 | orbi12i 766 |
. . . . . 6
|
| 13 | elun 3314 |
. . . . . 6
| |
| 14 | 9 | biorfi 748 |
. . . . . 6
|
| 15 | 12, 13, 14 | 3bitr4ri 213 |
. . . . 5
|
| 16 | opelxp 4705 |
. . . . . . . 8
| |
| 17 | 3, 16 | mpbiran2 944 |
. . . . . . 7
|
| 18 | opelxp 4705 |
. . . . . . . 8
| |
| 19 | 9 | bianfi 950 |
. . . . . . . 8
|
| 20 | 18, 19 | bitr4i 187 |
. . . . . . 7
|
| 21 | 17, 20 | orbi12i 766 |
. . . . . 6
|
| 22 | elun 3314 |
. . . . . 6
| |
| 23 | 9 | biorfi 748 |
. . . . . 6
|
| 24 | 21, 22, 23 | 3bitr4ri 213 |
. . . . 5
|
| 25 | 1, 15, 24 | 3bitr4g 223 |
. . . 4
|
| 26 | 25 | eqrdv 2203 |
. . 3
|
| 27 | eleq2 2269 |
. . . . 5
| |
| 28 | opelxp 4705 |
. . . . . . . 8
| |
| 29 | p0ex 4232 |
. . . . . . . . . . . 12
| |
| 30 | 29 | elsn 3649 |
. . . . . . . . . . 11
|
| 31 | eqcom 2207 |
. . . . . . . . . . 11
| |
| 32 | 30, 31 | bitri 184 |
. . . . . . . . . 10
|
| 33 | 7, 32 | nemtbir 2465 |
. . . . . . . . 9
|
| 34 | 33 | bianfi 950 |
. . . . . . . 8
|
| 35 | 28, 34 | bitr4i 187 |
. . . . . . 7
|
| 36 | 29 | snid 3664 |
. . . . . . . 8
|
| 37 | opelxp 4705 |
. . . . . . . 8
| |
| 38 | 36, 37 | mpbiran2 944 |
. . . . . . 7
|
| 39 | 35, 38 | orbi12i 766 |
. . . . . 6
|
| 40 | elun 3314 |
. . . . . 6
| |
| 41 | biorf 746 |
. . . . . . 7
| |
| 42 | 33, 41 | ax-mp 5 |
. . . . . 6
|
| 43 | 39, 40, 42 | 3bitr4ri 213 |
. . . . 5
|
| 44 | opelxp 4705 |
. . . . . . . 8
| |
| 45 | 33 | bianfi 950 |
. . . . . . . 8
|
| 46 | 44, 45 | bitr4i 187 |
. . . . . . 7
|
| 47 | opelxp 4705 |
. . . . . . . 8
| |
| 48 | 36, 47 | mpbiran2 944 |
. . . . . . 7
|
| 49 | 46, 48 | orbi12i 766 |
. . . . . 6
|
| 50 | elun 3314 |
. . . . . 6
| |
| 51 | biorf 746 |
. . . . . . 7
| |
| 52 | 33, 51 | ax-mp 5 |
. . . . . 6
|
| 53 | 49, 50, 52 | 3bitr4ri 213 |
. . . . 5
|
| 54 | 27, 43, 53 | 3bitr4g 223 |
. . . 4
|
| 55 | 54 | eqrdv 2203 |
. . 3
|
| 56 | 26, 55 | jca 306 |
. 2
|
| 57 | xpeq1 4689 |
. . 3
| |
| 58 | xpeq1 4689 |
. . 3
| |
| 59 | uneq12 3322 |
. . 3
| |
| 60 | 57, 58, 59 | syl2an 289 |
. 2
|
| 61 | 56, 60 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |