ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthprc Unicode version

Theorem opthprc 4662
Description: Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.)
Assertion
Ref Expression
opthprc  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem opthprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq2 2234 . . . . 5  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  ->  ( <. x ,  (/) >.  e.  (
( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  <->  <. x ,  (/) >.  e.  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) ) ) )
2 0ex 4116 . . . . . . . . 9  |-  (/)  e.  _V
32snid 3614 . . . . . . . 8  |-  (/)  e.  { (/)
}
4 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  (/) >.  e.  ( A  X.  { (/) } )  <->  ( x  e.  A  /\  (/)  e.  { (/)
} ) )
53, 4mpbiran2 936 . . . . . . 7  |-  ( <.
x ,  (/) >.  e.  ( A  X.  { (/) } )  <->  x  e.  A
)
6 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  (/) >.  e.  ( B  X.  { { (/)
} } )  <->  ( x  e.  B  /\  (/)  e.  { { (/) } } ) )
7 0nep0 4151 . . . . . . . . . 10  |-  (/)  =/=  { (/)
}
82elsn 3599 . . . . . . . . . 10  |-  ( (/)  e.  { { (/) } }  <->  (/)  =  { (/) } )
97, 8nemtbir 2429 . . . . . . . . 9  |-  -.  (/)  e.  { { (/) } }
109bianfi 942 . . . . . . . 8  |-  ( (/)  e.  { { (/) } }  <->  ( x  e.  B  /\  (/) 
e.  { { (/) } } ) )
116, 10bitr4i 186 . . . . . . 7  |-  ( <.
x ,  (/) >.  e.  ( B  X.  { { (/)
} } )  <->  (/)  e.  { { (/) } } )
125, 11orbi12i 759 . . . . . 6  |-  ( (
<. x ,  (/) >.  e.  ( A  X.  { (/) } )  \/  <. x ,  (/) >.  e.  ( B  X.  { { (/) } } ) )  <->  ( x  e.  A  \/  (/)  e.  { { (/) } } ) )
13 elun 3268 . . . . . 6  |-  ( <.
x ,  (/) >.  e.  ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  <->  ( <. x ,  (/) >.  e.  ( A  X.  { (/) } )  \/  <. x ,  (/) >.  e.  ( B  X.  { { (/) } } ) ) )
149biorfi 741 . . . . . 6  |-  ( x  e.  A  <->  ( x  e.  A  \/  (/)  e.  { { (/) } } ) )
1512, 13, 143bitr4ri 212 . . . . 5  |-  ( x  e.  A  <->  <. x ,  (/) >.  e.  ( ( A  X.  { (/) } )  u.  ( B  X.  { { (/) } } ) ) )
16 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  (/) >.  e.  ( C  X.  { (/) } )  <->  ( x  e.  C  /\  (/)  e.  { (/)
} ) )
173, 16mpbiran2 936 . . . . . . 7  |-  ( <.
x ,  (/) >.  e.  ( C  X.  { (/) } )  <->  x  e.  C
)
18 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  (/) >.  e.  ( D  X.  { { (/)
} } )  <->  ( x  e.  D  /\  (/)  e.  { { (/) } } ) )
199bianfi 942 . . . . . . . 8  |-  ( (/)  e.  { { (/) } }  <->  ( x  e.  D  /\  (/) 
e.  { { (/) } } ) )
2018, 19bitr4i 186 . . . . . . 7  |-  ( <.
x ,  (/) >.  e.  ( D  X.  { { (/)
} } )  <->  (/)  e.  { { (/) } } )
2117, 20orbi12i 759 . . . . . 6  |-  ( (
<. x ,  (/) >.  e.  ( C  X.  { (/) } )  \/  <. x ,  (/) >.  e.  ( D  X.  { { (/) } } ) )  <->  ( x  e.  C  \/  (/)  e.  { { (/) } } ) )
22 elun 3268 . . . . . 6  |-  ( <.
x ,  (/) >.  e.  ( ( C  X.  { (/)
} )  u.  ( D  X.  { { (/) } } ) )  <->  ( <. x ,  (/) >.  e.  ( C  X.  { (/) } )  \/  <. x ,  (/) >.  e.  ( D  X.  { { (/) } } ) ) )
239biorfi 741 . . . . . 6  |-  ( x  e.  C  <->  ( x  e.  C  \/  (/)  e.  { { (/) } } ) )
2421, 22, 233bitr4ri 212 . . . . 5  |-  ( x  e.  C  <->  <. x ,  (/) >.  e.  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) ) )
251, 15, 243bitr4g 222 . . . 4  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  ->  ( x  e.  A  <->  x  e.  C
) )
2625eqrdv 2168 . . 3  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  ->  A  =  C )
27 eleq2 2234 . . . . 5  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  ->  ( <. x ,  { (/) } >.  e.  ( ( A  X.  { (/) } )  u.  ( B  X.  { { (/) } } ) )  <->  <. x ,  { (/)
} >.  e.  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) ) ) )
28 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  { (/) }
>.  e.  ( A  X.  { (/) } )  <->  ( x  e.  A  /\  { (/) }  e.  { (/) } ) )
29 p0ex 4174 . . . . . . . . . . . 12  |-  { (/) }  e.  _V
3029elsn 3599 . . . . . . . . . . 11  |-  ( {
(/) }  e.  { (/) }  <->  { (/) }  =  (/) )
31 eqcom 2172 . . . . . . . . . . 11  |-  ( {
(/) }  =  (/)  <->  (/)  =  { (/)
} )
3230, 31bitri 183 . . . . . . . . . 10  |-  ( {
(/) }  e.  { (/) }  <->  (/)  =  { (/) } )
337, 32nemtbir 2429 . . . . . . . . 9  |-  -.  { (/)
}  e.  { (/) }
3433bianfi 942 . . . . . . . 8  |-  ( {
(/) }  e.  { (/) }  <-> 
( x  e.  A  /\  { (/) }  e.  { (/)
} ) )
3528, 34bitr4i 186 . . . . . . 7  |-  ( <.
x ,  { (/) }
>.  e.  ( A  X.  { (/) } )  <->  { (/) }  e.  {
(/) } )
3629snid 3614 . . . . . . . 8  |-  { (/) }  e.  { { (/) } }
37 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  { (/) }
>.  e.  ( B  X.  { { (/) } } )  <-> 
( x  e.  B  /\  { (/) }  e.  { { (/) } } ) )
3836, 37mpbiran2 936 . . . . . . 7  |-  ( <.
x ,  { (/) }
>.  e.  ( B  X.  { { (/) } } )  <-> 
x  e.  B )
3935, 38orbi12i 759 . . . . . 6  |-  ( (
<. x ,  { (/) }
>.  e.  ( A  X.  { (/) } )  \/ 
<. x ,  { (/) }
>.  e.  ( B  X.  { { (/) } } ) )  <->  ( { (/) }  e.  { (/) }  \/  x  e.  B )
)
40 elun 3268 . . . . . 6  |-  ( <.
x ,  { (/) }
>.  e.  ( ( A  X.  { (/) } )  u.  ( B  X.  { { (/) } } ) )  <->  ( <. x ,  { (/) } >.  e.  ( A  X.  { (/) } )  \/  <. x ,  { (/) } >.  e.  ( B  X.  { { (/)
} } ) ) )
41 biorf 739 . . . . . . 7  |-  ( -. 
{ (/) }  e.  { (/)
}  ->  ( x  e.  B  <->  ( { (/) }  e.  { (/) }  \/  x  e.  B )
) )
4233, 41ax-mp 5 . . . . . 6  |-  ( x  e.  B  <->  ( { (/)
}  e.  { (/) }  \/  x  e.  B
) )
4339, 40, 423bitr4ri 212 . . . . 5  |-  ( x  e.  B  <->  <. x ,  { (/) } >.  e.  ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) ) )
44 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  { (/) }
>.  e.  ( C  X.  { (/) } )  <->  ( x  e.  C  /\  { (/) }  e.  { (/) } ) )
4533bianfi 942 . . . . . . . 8  |-  ( {
(/) }  e.  { (/) }  <-> 
( x  e.  C  /\  { (/) }  e.  { (/)
} ) )
4644, 45bitr4i 186 . . . . . . 7  |-  ( <.
x ,  { (/) }
>.  e.  ( C  X.  { (/) } )  <->  { (/) }  e.  {
(/) } )
47 opelxp 4641 . . . . . . . 8  |-  ( <.
x ,  { (/) }
>.  e.  ( D  X.  { { (/) } } )  <-> 
( x  e.  D  /\  { (/) }  e.  { { (/) } } ) )
4836, 47mpbiran2 936 . . . . . . 7  |-  ( <.
x ,  { (/) }
>.  e.  ( D  X.  { { (/) } } )  <-> 
x  e.  D )
4946, 48orbi12i 759 . . . . . 6  |-  ( (
<. x ,  { (/) }
>.  e.  ( C  X.  { (/) } )  \/ 
<. x ,  { (/) }
>.  e.  ( D  X.  { { (/) } } ) )  <->  ( { (/) }  e.  { (/) }  \/  x  e.  D )
)
50 elun 3268 . . . . . 6  |-  ( <.
x ,  { (/) }
>.  e.  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  <->  ( <. x ,  { (/) } >.  e.  ( C  X.  { (/) } )  \/  <. x ,  { (/) } >.  e.  ( D  X.  { { (/)
} } ) ) )
51 biorf 739 . . . . . . 7  |-  ( -. 
{ (/) }  e.  { (/)
}  ->  ( x  e.  D  <->  ( { (/) }  e.  { (/) }  \/  x  e.  D )
) )
5233, 51ax-mp 5 . . . . . 6  |-  ( x  e.  D  <->  ( { (/)
}  e.  { (/) }  \/  x  e.  D
) )
5349, 50, 523bitr4ri 212 . . . . 5  |-  ( x  e.  D  <->  <. x ,  { (/) } >.  e.  ( ( C  X.  { (/)
} )  u.  ( D  X.  { { (/) } } ) ) )
5427, 43, 533bitr4g 222 . . . 4  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  ->  ( x  e.  B  <->  x  e.  D
) )
5554eqrdv 2168 . . 3  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  ->  B  =  D )
5626, 55jca 304 . 2  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  ->  ( A  =  C  /\  B  =  D ) )
57 xpeq1 4625 . . 3  |-  ( A  =  C  ->  ( A  X.  { (/) } )  =  ( C  X.  { (/) } ) )
58 xpeq1 4625 . . 3  |-  ( B  =  D  ->  ( B  X.  { { (/) } } )  =  ( D  X.  { { (/)
} } ) )
59 uneq12 3276 . . 3  |-  ( ( ( A  X.  { (/)
} )  =  ( C  X.  { (/) } )  /\  ( B  X.  { { (/) } } )  =  ( D  X.  { { (/)
} } ) )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) ) )
6057, 58, 59syl2an 287 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) ) )
6156, 60impbii 125 1  |-  ( ( ( A  X.  { (/)
} )  u.  ( B  X.  { { (/) } } ) )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } ) )  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    u. cun 3119   (/)c0 3414   {csn 3583   <.cop 3586    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator