| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnan | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 |
|
| Ref | Expression |
|---|---|
| intnan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | mto 666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: bianfi 953 axnul 4209 fodjum 7313 nninfwlporlemd 7339 iftrueb01 7408 pw1if 7410 2omotaplemap 7443 xrltnr 9975 nltmnf 9984 3lcm2e6woprm 12608 6lcm4e12 12609 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |