| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intnan | Unicode version | ||
| Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| intnan.1 |
|
| Ref | Expression |
|---|---|
| intnan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intnan.1 |
. 2
| |
| 2 | simpr 110 |
. 2
| |
| 3 | 1, 2 | mto 664 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: bianfi 950 axnul 4185 fodjum 7274 nninfwlporlemd 7300 iftrueb01 7369 pw1if 7371 2omotaplemap 7404 xrltnr 9936 nltmnf 9945 3lcm2e6woprm 12523 6lcm4e12 12524 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |