ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intnan Unicode version

Theorem intnan 915
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
Hypothesis
Ref Expression
intnan.1  |-  -.  ph
Assertion
Ref Expression
intnan  |-  -.  ( ps  /\  ph )

Proof of Theorem intnan
StepHypRef Expression
1 intnan.1 . 2  |-  -.  ph
2 simpr 109 . 2  |-  ( ( ps  /\  ph )  ->  ph )
31, 2mto 652 1  |-  -.  ( ps  /\  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-in1 604  ax-in2 605
This theorem is referenced by:  bianfi  932  axnul  4089  fodjum  7089  xrltnr  9686  nltmnf  9695  3lcm2e6woprm  11963  6lcm4e12  11964  subctctexmid  13584
  Copyright terms: Public domain W3C validator