ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in0 Unicode version

Theorem in0 3481
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
in0  |-  ( A  i^i  (/) )  =  (/)

Proof of Theorem in0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3450 . . . 4  |-  -.  x  e.  (/)
21bianfi 949 . . 3  |-  ( x  e.  (/)  <->  ( x  e.  A  /\  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  /\  x  e.  (/) )  <->  x  e.  (/) )
43ineqri 3352 1  |-  ( A  i^i  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164    i^i cin 3152   (/)c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-nul 3447
This theorem is referenced by:  0in  3482  res0  4946  dju0en  7274  rest0  14347
  Copyright terms: Public domain W3C validator