ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in0 Unicode version

Theorem in0 3526
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
in0  |-  ( A  i^i  (/) )  =  (/)

Proof of Theorem in0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . . 4  |-  -.  x  e.  (/)
21bianfi 953 . . 3  |-  ( x  e.  (/)  <->  ( x  e.  A  /\  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  /\  x  e.  (/) )  <->  x  e.  (/) )
43ineqri 3397 1  |-  ( A  i^i  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200    i^i cin 3196   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-nul 3492
This theorem is referenced by:  0in  3527  res0  5009  dju0en  7396  bitsinv1  12473  rest0  14853
  Copyright terms: Public domain W3C validator