ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in0 Unicode version

Theorem in0 3458
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
in0  |-  ( A  i^i  (/) )  =  (/)

Proof of Theorem in0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3427 . . . 4  |-  -.  x  e.  (/)
21bianfi 947 . . 3  |-  ( x  e.  (/)  <->  ( x  e.  A  /\  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  /\  x  e.  (/) )  <->  x  e.  (/) )
43ineqri 3329 1  |-  ( A  i^i  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148    i^i cin 3129   (/)c0 3423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-dif 3132  df-in 3136  df-nul 3424
This theorem is referenced by:  0in  3459  res0  4912  dju0en  7213  rest0  13682
  Copyright terms: Public domain W3C validator