ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  in0 Unicode version

Theorem in0 3443
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
in0  |-  ( A  i^i  (/) )  =  (/)

Proof of Theorem in0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3413 . . . 4  |-  -.  x  e.  (/)
21bianfi 937 . . 3  |-  ( x  e.  (/)  <->  ( x  e.  A  /\  x  e.  (/) ) )
32bicomi 131 . 2  |-  ( ( x  e.  A  /\  x  e.  (/) )  <->  x  e.  (/) )
43ineqri 3315 1  |-  ( A  i^i  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136    i^i cin 3115   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-nul 3410
This theorem is referenced by:  0in  3444  res0  4888  dju0en  7170  rest0  12819
  Copyright terms: Public domain W3C validator